A Significance-Based Graph Model for Clustering Web Documents | SpringerLink
Skip to main content

A Significance-Based Graph Model for Clustering Web Documents

  • Conference paper
Advances in Artificial Intelligence (SETN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3955))

Included in the following conference series:

  • 1789 Accesses

Abstract

Traditional document clustering techniques rely on single-term analysis, such as the widely used Vector Space Model. However, recent approaches have emerged that are based on Graph Models and provide a more detailed description of document properties. In this work we present a novel Significance-based Graph Model for Web documents that introduces a sophisticated graph weighting method, based on significance evaluation of graph elements. We also define an associated similarity measure based on the maximum common subgraph between the graphs of the corresponding web documents. Experimental results on artificial and real document collections using well-known clustering algorithms indicate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schenker, A., Last, M., Bunke, H., Kandel, A.: Clustering of Web Documents Using a Graph Model. In: Antonacopoulos, A., Hu, J. (eds.) Web Document Analysis: Challenges and Opportunities (to appear)

    Google Scholar 

  2. Hammuda, K.M.: Efficient Phrase-Based Document Indexing for Web-Document Clustering. IEEE, Los Alamitos (2003)

    Google Scholar 

  3. Schenker, A., Last, M., Bunke, H., Kandel, A.: A Comparison of Two Novel Algorithms for Clustering Web Documents. In: 2nd Int. Workshop of Web Document Analysis, WDA 2003, Edinburgh, UK, August 2003 (2003)

    Google Scholar 

  4. Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means clustering algorithm. Pattern Recognition 36, 451–461 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kalogeratos, A., Likas, A. (2006). A Significance-Based Graph Model for Clustering Web Documents. In: Antoniou, G., Potamias, G., Spyropoulos, C., Plexousakis, D. (eds) Advances in Artificial Intelligence. SETN 2006. Lecture Notes in Computer Science(), vol 3955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11752912_58

Download citation

  • DOI: https://doi.org/10.1007/11752912_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34117-8

  • Online ISBN: 978-3-540-34118-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics