Discovering Patterns Based on Fuzzy Logic Theory | SpringerLink
Skip to main content

Discovering Patterns Based on Fuzzy Logic Theory

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3983))

Included in the following conference series:

  • 569 Accesses

Abstract

This study investigates the formulation of fuzzy logic as integrated component of the proposed model in data mining in order to classify the dataset prior to the implementation of data mining tools such summarization, association rule discovery, and prediction. The novel contribution of this paper is the fuzzification of the dataset prior to pattern discovery. The model is compared to the classical clustering, regression model, and neural network using the Internet usage database available at the UCI Knowledge Discovery on Databases (KDD) archive. Our test is anchored on parameters like relevant measure, processing performance, discovered rules or patterns and practical use of the findings. The proposed model indicates adequate performance in clustering, higher clustering accuracy and efficient pattern discovery compared with the other models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, S., Lee, T.S., Kim, H.-J., Lee, Y.K.: Development of traffic accidents prediction model with intelligent system theory. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 880–888. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kim, J.-S., Kim, M., Noh, B.-N.: A fuzzy expert system for network forensics. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3043, pp. 175–182. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Crestani, F., Pasi, G.: Soft Information Retrieval: Applications of Fuzzy Set Theory and Neural Networks. In: Kasabov, N., Kozma, R. (eds.) Neuro-Fuzzy Techniques for Intelligent Information Systems, pp. 287–315. Physica Verlag (Springer Verlag), Heidelberg (1999)

    Google Scholar 

  5. Hollmen, J.: Self Organizing Map (1996), available at http://www.cis.hut.fi/~jhollmen/dippa/node9.html

  6. UCI Knowledge Discovery in databases, available at http://kdd.ics.uci.edu/

  7. Chen, B., Haas, P., Scheuermann, P.: A new two-phase sampling based algorithm for discovering association rules. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2002)

    Google Scholar 

  8. Han, E. H., Karypis G., Kumar, V., and Mobasher, B.: Clustering in a high-dimensional space using hypergraph models (1998), Available at http://www.informatikuni-siegen.de/~galeas/papers/general/Clustering_in_a_High-Dimensional_Space_Using_Hypergraphs_Models_28Han1997b29.pdf

  9. Agglomerative Hierarchical Clustering, Available at http://www2.cs.uregina.ca/~hamilton/courses/831/notes/clustering/clustering.htm

  10. Brule J. F.: Fuzzy Systems. Available at http://www.austinlinks.com/Fuzzy/tutorial.html

  11. Saint-Paul, R., Raschia, G., Mouaddib, N.: General Purpose Database Summarization. In: Proceedings of the 31st VLDB Conference, Trondleim, Norway, pp. 733–744 (2005)

    Google Scholar 

  12. Dembele, D., Kastner, P.: Fuzzy C-Means for Clustering Microarray Data. Journal of Bioinformatics 19(8), 973–980 (2003)

    Article  Google Scholar 

  13. The Generic Fuzzy Clustering Algorithm (2005), available at http://polywww.in2p3.fr/activities/info/doc/glast/fc.htm#2

  14. Witten, I., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gerardo, B.D., Lee, J., Joo, SC. (2006). Discovering Patterns Based on Fuzzy Logic Theory. In: Gavrilova, M.L., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3983. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751632_97

Download citation

  • DOI: https://doi.org/10.1007/11751632_97

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34077-5

  • Online ISBN: 978-3-540-34078-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics