Grid Service Implementation of Aerosol Optical Thickness Retrieval over Land from MODIS | SpringerLink
Skip to main content

Grid Service Implementation of Aerosol Optical Thickness Retrieval over Land from MODIS

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3983))

Included in the following conference series:

  • 822 Accesses

Abstract

To derive the actual land surface information quantitatively, the atmospheric effects should be correctly removed. Atmospheric effects dependent on aerosol particles, clouds and other atmosphere conditions. Aerosol parameters can be retrieved from the remotely sensed data. The retrieved aerosol characters can also be applied to environmental monitoring. To retrieval the aerosol optical thickness over land, many methods have been developed. The most popular one is the dark dense vegetation method. But it is confined to vegetation fields. The SYNTAM method can be used to retrieval aerosol optical thickness over land from MODIS data, no matter whether the land is dark or bright. In this paper, the SYNTAM method is applied to MODIS data for the retrieval of aerosol optical thickness over China. The retrieval process is complicated. And the EMS memory required is too large for a personal computing to run successfully. To solve this problem, the Grid environment is used. Our experiments were performed on the High-Throughput Spatial Information Processing Prototype System based on Grid platform in Institute of Remote Sensing Applications, Chinese Academy of Sciences. The aerosol optical thickness retrieval process is described in this paper. And the detail data query, data pre-processing, job monitoring and post-processing is discussed. Moreover, test results are also reported in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aloisio, G., Cafaro, M.: A dynamic Earth observation system. Parallel Computing 29(10), 1357–1362 (2003)

    Article  Google Scholar 

  • Aloisio, G., Cafaro, M., Epicoco, I., Quarta, G.: A problem solving environment for remote sensing data processing. In: Proceeding of ITCC 2004: International Conference on Information Technology: Coding and Computing held in Las Vegas, NV, USA, on April 5-7, vol. 2, pp. 56–61 (2004)

    Google Scholar 

  • Cai, G.Y., Xue, Y., Tang, J.K., Wang, J.Q., Wang, Y.G., Luo, Y., Hu, Y.C., Zhong, S.B., Sun, X.S.: Experience of remote sensing information modelling with grid computing. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3039, pp. 989–996. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  • Cannataro, M.: Clusters and grids for distributed and parallel knowledge discovery. In: Williams, R., Afsarmanesh, H., Bubak, M., Hertzberger, B. (eds.) HPCN-Europe 2000. LNCS, vol. 1823, pp. 708–716. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  • Hu, Y., Xue, Y., Tang, J., Zhong, S., Cai, G.: Data-parallel method for georeferencing of MODIS level 1B data using grid computing. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3516, pp. 883–886. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Running, S.W., Justice, C.O., Salomonson, V.V., Hall, D., Barker, J., Kaufman, Y.J., Strahler, A.H., Huete, A.R., Muller, J.-P., Vanderbilt, V., Wan, Z.M., Teillet, P., Carneggie, D.: Terrestrial remote sensing science and algorithms planned for EOS/MODIS. International Journal of Remote Sensing 15(17), 3587–3620 (1994)

    Article  Google Scholar 

  • Jiakui, T., Yong, X., Tong, Y., Yanning, G., Guoyin, C., Yincui, H.: Aerosol Optical Thickness Determination for Land Surface from MODIS data. Science in China (Ser. D Earth Sciences) 35(5), 1–8 (2005)

    Google Scholar 

  • Jiakui, T., Yong, X., Tong, Y., Yanning, G.: Aerosol Optical Thickness Determination by Exploiting the Synergy of TERRA and AQUA MODIS (SYNTAM). Remote Sensing of Environment 94(3), 327–334 (2005)

    Article  Google Scholar 

  • Wang, J., Sun, X., Xue, Y., Hu, Y., Luo, Y., Wang, Y., Zhong, S., Zhang, A., Tang, J., Cai, G.: Preliminary study on unsupervised classification of remotely sensed images on the grid. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3039, pp. 981–988. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, Y. et al. (2006). Grid Service Implementation of Aerosol Optical Thickness Retrieval over Land from MODIS. In: Gavrilova, M.L., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3983. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751632_117

Download citation

  • DOI: https://doi.org/10.1007/11751632_117

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34077-5

  • Online ISBN: 978-3-540-34078-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics