Abstract
To derive the actual land surface information quantitatively, the atmospheric effects should be correctly removed. Atmospheric effects dependent on aerosol particles, clouds and other atmosphere conditions. Aerosol parameters can be retrieved from the remotely sensed data. The retrieved aerosol characters can also be applied to environmental monitoring. To retrieval the aerosol optical thickness over land, many methods have been developed. The most popular one is the dark dense vegetation method. But it is confined to vegetation fields. The SYNTAM method can be used to retrieval aerosol optical thickness over land from MODIS data, no matter whether the land is dark or bright. In this paper, the SYNTAM method is applied to MODIS data for the retrieval of aerosol optical thickness over China. The retrieval process is complicated. And the EMS memory required is too large for a personal computing to run successfully. To solve this problem, the Grid environment is used. Our experiments were performed on the High-Throughput Spatial Information Processing Prototype System based on Grid platform in Institute of Remote Sensing Applications, Chinese Academy of Sciences. The aerosol optical thickness retrieval process is described in this paper. And the detail data query, data pre-processing, job monitoring and post-processing is discussed. Moreover, test results are also reported in this paper.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aloisio, G., Cafaro, M.: A dynamic Earth observation system. Parallel Computing 29(10), 1357–1362 (2003)
Aloisio, G., Cafaro, M., Epicoco, I., Quarta, G.: A problem solving environment for remote sensing data processing. In: Proceeding of ITCC 2004: International Conference on Information Technology: Coding and Computing held in Las Vegas, NV, USA, on April 5-7, vol. 2, pp. 56–61 (2004)
Cai, G.Y., Xue, Y., Tang, J.K., Wang, J.Q., Wang, Y.G., Luo, Y., Hu, Y.C., Zhong, S.B., Sun, X.S.: Experience of remote sensing information modelling with grid computing. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3039, pp. 989–996. Springer, Heidelberg (2004)
Cannataro, M.: Clusters and grids for distributed and parallel knowledge discovery. In: Williams, R., Afsarmanesh, H., Bubak, M., Hertzberger, B. (eds.) HPCN-Europe 2000. LNCS, vol. 1823, pp. 708–716. Springer, Heidelberg (2000)
Hu, Y., Xue, Y., Tang, J., Zhong, S., Cai, G.: Data-parallel method for georeferencing of MODIS level 1B data using grid computing. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3516, pp. 883–886. Springer, Heidelberg (2005)
Running, S.W., Justice, C.O., Salomonson, V.V., Hall, D., Barker, J., Kaufman, Y.J., Strahler, A.H., Huete, A.R., Muller, J.-P., Vanderbilt, V., Wan, Z.M., Teillet, P., Carneggie, D.: Terrestrial remote sensing science and algorithms planned for EOS/MODIS. International Journal of Remote Sensing 15(17), 3587–3620 (1994)
Jiakui, T., Yong, X., Tong, Y., Yanning, G., Guoyin, C., Yincui, H.: Aerosol Optical Thickness Determination for Land Surface from MODIS data. Science in China (Ser. D Earth Sciences) 35(5), 1–8 (2005)
Jiakui, T., Yong, X., Tong, Y., Yanning, G.: Aerosol Optical Thickness Determination by Exploiting the Synergy of TERRA and AQUA MODIS (SYNTAM). Remote Sensing of Environment 94(3), 327–334 (2005)
Wang, J., Sun, X., Xue, Y., Hu, Y., Luo, Y., Wang, Y., Zhong, S., Zhang, A., Tang, J., Cai, G.: Preliminary study on unsupervised classification of remotely sensed images on the grid. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3039, pp. 981–988. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hu, Y. et al. (2006). Grid Service Implementation of Aerosol Optical Thickness Retrieval over Land from MODIS. In: Gavrilova, M.L., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3983. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751632_117
Download citation
DOI: https://doi.org/10.1007/11751632_117
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34077-5
Online ISBN: 978-3-540-34078-2
eBook Packages: Computer ScienceComputer Science (R0)