A Unified Framework for the Analysis of M/G/1 Queue Controlled by Workload | SpringerLink
Skip to main content

A Unified Framework for the Analysis of M/G/1 Queue Controlled by Workload

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3982))

Included in the following conference series:

Abstract

sIn this paper, we develop a unified framework for the analysis of the waiting time, the sojourn time and the queue length of the M/G/1 queue in which the server is controlled by workload. We apply our framework to the D-policy M/G/1 queue and confirm the results that already exist in the literature. We also use our approach and derive, for the first time, the sojourn time distribution of an arbitrary customer in the M/G/1 queue under D-policy. The methodologies developed in this paper can be applied to a wide range of M/G/1 queueing systems in which the server is controlled by workload.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Artalejo, J.R.: On the M/G/1 queue with D-policy. Applied Mathematical Modelling 25, 1055–1069 (2001)

    Article  MATH  Google Scholar 

  2. Balachandran, K.R.: Control policies for a single server system. Management Sci. 19, 1013–1018 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  3. Balachandran, K.R., Tijms, H.: On the D-policy for the M/G/1 queue. Management Sci. 21(9), 1073–1076 (1975)

    MATH  MathSciNet  Google Scholar 

  4. Boxma, O.J.: Note on a control problem of Balachandran and Tijms. Management Sci. 22(8), 916–917 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boxma, O.J.: Workloads and waiting times in single-server systems with multiple customer classes. Queueing Systems 5(1-3), 185–214 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boxma, O.J., Groenendijk, W.P.: Pseudo-conservation laws in cyclic-service systems. J. Appl. Probab. 24(4), 949–964 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chae, K.C., Park, Y.I.: On the optimal D-policy for the M/G/1 queue. J. Korean Institute of Industrial Engineers (KIIE) 25(4), 527–531 (1999)

    Google Scholar 

  8. Chae, K.C., Park, Y.I.: The queue length distribution for the M/G/1 queue under the D-policy. J. Appl. Prob. 38(1), 278–279 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dshalalow, J.H.: Queueing processes in bulk systems under the D-policy. J. Appl. Probab. 35, 976–989 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feinberg, U.A., Kella, O.: Optimality of D-policies for an M/G/1 queue with a removable server. Queueing Systems 42, 355–376 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lee, H.W., Baek, J.W.: BMAP/G/1 queue under D-policy: queue length analysis. Stochastic Models 21(2-3), 1–21 (2005)

    Article  MathSciNet  Google Scholar 

  12. Lee, H.W., Baek, J.W., Jeon, J.: Analysis of queue under D-policy. Stochastic Analysis and Applications 23, 785–808 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lee, H.W., Cheon, S.H., Lee, E.Y., Chae, K.C.: Workload and waiting time analysis of MAP/G/1 queue under D-policy. Queueing Systems 48, 421–443 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lee, H.W., Song, K.S.: Queue length analysis of MAP/G/1 queue under D-policy. Stochastic Models 20(3), 363–380 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Li, J., Niu, S.C.: The waiting time distribution for the GI/G/1 queue under the D-policy. Prob. Eng. Inf. Sci. 6, 287–308 (1992)

    Article  MATH  Google Scholar 

  16. Lillo, R.E., Martin, M.: On optimal exhaustive policies for the M/G/1 queue. Operations Research Letters 27, 39–46 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Park, Y.I., Chae, K.C.: Analysis of unfinished work and queue waiting time for the M/G/1 queue with D-policy. Journal of the Korean Statistical Society 28(4), 523–533 (1999)

    MathSciNet  Google Scholar 

  18. Rhee, H.K.: Development of a new methodology to find the expected busy periods for controllable M/G/1 queueing models operating under the multi-variable operating policies: concepts and applications to the dyadic policies. J. Korean Institute of Industrial Engineers (KIIE) 23(4), 729–739 (1997)

    Google Scholar 

  19. Ross, S.M.: Stochastic Processes, 2nd edn. John Wiley & Sons, Inc., Chichester (1996)

    MATH  Google Scholar 

  20. Sivazlian, B.D.: Approximate optimal solution for a D-policy in an M/G/1 queueing system. AIIE Transactions 11, 341–343 (1979)

    Google Scholar 

  21. Takagi, H.: Queueing Analysis: A Foundation of Performance Evaluation, Vacation and Priority Systems, Part I, vol. I. North-Holland, Amsterdam (1991)

    Google Scholar 

  22. Tijms, H.C.: Optimal control of the workload in an M/G/1 queueing system with removable server. Math. Operationsforsch. u. Statist. 7, 933–943 (1976)

    MathSciNet  Google Scholar 

  23. Wolff, R.W.: Poisson arrivals see time averages. Oper. Res. 30(2), 223–231 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, H.W., Lee, S.W., Seo, W.J., Cheon, S.H., Jeon, J. (2006). A Unified Framework for the Analysis of M/G/1 Queue Controlled by Workload. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3982. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751595_76

Download citation

  • DOI: https://doi.org/10.1007/11751595_76

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34075-1

  • Online ISBN: 978-3-540-34076-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics