Grey Reinforcement Learning for Incomplete Information Processing | SpringerLink
Skip to main content

Grey Reinforcement Learning for Incomplete Information Processing

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3959))

Abstract

New representation and computation mechanisms are key approaches for learning problems with incomplete information or in large probabilistic environments. In this paper, traditional reinforcement learning (RL) methods are combined with grey theory and a novel grey reinforcement learning (GRL) framework is proposed to solve complex problems with incomplete information. Typical example of mobile robot navigation is given out to evaluate the performance and practicability of GRL. Related issues are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sutton, R., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  2. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement Learning: A Survey. Journal of Artificial Intelligence Research 4, 237–287 (1996)

    Google Scholar 

  3. Sutton, R.: Learning to Predict by the Methods of Temporal Difference. Machine Learning 3, 9–44 (1988)

    Google Scholar 

  4. Bertsekas, D. P., Tsitsiklis, J. N.: Neuro-Dynamic Programming. Athena Scientific, Belmont, MA(1996)

    MATH  Google Scholar 

  5. Watkins, C., Dayan, P.: Q-learning. Machine Learning 8, 279–292 (1992)

    MATH  Google Scholar 

  6. Santamaría, J., Sutton, R., Ram, A.: Experiments with Reinforcement Learning in Problems with Continuous State and Action Spaces. Adaptive Behavior 6, 163–217 (1997)

    Article  Google Scholar 

  7. Smart, W.D., Kaelbling, L.P.: Effective reinforcement learning for mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3404–3410. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  8. Kondo, T., Ito, K.: A reinforcement learning with evolutionary state recruitment strategy for autonomous mobile robots control. Robotics and Autonomous Systems 46, 111–124 (2004)

    Article  Google Scholar 

  9. Beom, H.R., Cho, H.S.: A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement learning. IEEE Transactions on Systems Man and Cybernetics 25, 464–477 (1995)

    Article  Google Scholar 

  10. Wiering, M., Schmidhuber, J.: HQ-Learning. Adaptive Behavior 6, 219–246 (1997)

    Article  Google Scholar 

  11. Barto, A.G., Mahanevan, S.: RecentAdvances in Hierarchical Reinforcement Learning. Discrete Event Dynamic Systems: Theory and Applications 13, 41–77 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sutton, R., Precup, D., Singh, S.: Between Mdps and Semi-mdps: A Framework for Temporal Abstraction in Reinforcement Learning. Artificial Intelligence 112, 181–211 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Parr, R., Russell, S.: Reinforcement learning with hierarchies of machines. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 1043–1049. MIT Press, Cambridge (1998)

    Google Scholar 

  14. Dietterich, T.G.: Hierarchical Reinforcement Learning with the Maxq Value Function Decomposition. Journal of Artificial Intelligence Research 13, 227–303 (2000)

    MATH  MathSciNet  Google Scholar 

  15. Theocharous, G.: Hierarchical Learning and Planning in Partially Observable Markov Decision Processes. Department of Computer Science and Engineering, Michigan State University, USA (2002)

    Google Scholar 

  16. Dong, D.Y., Chen, C.L., Chen, Z.H.: Quantum reinforcement learning. In: Natural Computation-ICNC2005. LNCS, vol. 3611, pp. 686–689. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Smith, A.J.: Applications of the self-organising map to reinforcement learning. Neural Networks 15, 1107–1124 (2002)

    Article  Google Scholar 

  18. Glorennec, P.Y., Jouffe, L.: Fuzzy Q-learning. In: Proceedings of the Sixth IEEE International Conference on Fuzzy Systems, pp. 659–662. IEEE Press, Los Alamitos (1997)

    Chapter  Google Scholar 

  19. Dong, D.Y., Chen, C.L., Zhang, C.B., Chen, Z.H.: An Autonomous Mobile Robot Based on Quantum Algorithm. In: CIS 2005. LNCS (LNAI), vol. 3801, pp. 394–399. Springer, Heidelberg (2005)

    Google Scholar 

  20. Likas, A.: Reinforcement learning using the stochastic fuzzy min-max neural network. Neural Processing Letters 13, 213–220 (2001)

    Article  MATH  Google Scholar 

  21. Deng, J. L.: Elements on Grey Theory. HUST Press, Wuhan, China (2002) (in Chinese)

    Google Scholar 

  22. Kuipers, B.: Qualitative simulation. Artificial Intelligence, 289–338 (1986)

    Google Scholar 

  23. Berleant, D., Kuipers, B.: Qualitative and quantitative simulation: bridging the gap. Artificial Intelligence 95, 215–255 (1997)

    Article  MATH  Google Scholar 

  24. Huang, Y.L.: Research on Grey Qualitative Simulation Base. University of Science and Technology of China (2004) (in Chinese)

    Google Scholar 

  25. Huang, Y.L., Chen, Z.H., Gui, W.S.: Grey Qualitative Simulation. The Journal of Grey System 1, 5–20 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, C., Dong, D., Chen, Z. (2006). Grey Reinforcement Learning for Incomplete Information Processing. In: Cai, JY., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2006. Lecture Notes in Computer Science, vol 3959. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11750321_38

Download citation

  • DOI: https://doi.org/10.1007/11750321_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34021-8

  • Online ISBN: 978-3-540-34022-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics