A Hybrid Genetic Algorithm/Particle Swarm Approach for Evaluation of Power Flow in Electric Network | SpringerLink
Skip to main content

A Hybrid Genetic Algorithm/Particle Swarm Approach for Evaluation of Power Flow in Electric Network

  • Conference paper
Advances in Machine Learning and Cybernetics

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3930))

  • 931 Accesses

Abstract

This paper presents an investigation of possible hybrid genetic algorithm / particle swarm optimization approaches to evaluate the flow of electric power in power transmission network. The possible schemes are presented and their performances are illustrated by applying them to the power flow problem of the Klos Kerner 11-busbar system. The performance of the hybrid algorithm in terms of reliability is further improved by applying the optimal values for both inertia weight and mutation probability which are found through parameter sensitivity analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Saadat, H.: Power system analysis. McGraw-Hill, New York (2004)

    Google Scholar 

  2. Iba, K., Suzuki, H., Egawa, M., Watanabe, T.: A method for finding pair of multiple load flow solutions in bulk power systems. IEEE Trans. Power Syst. 5(2), 582–591 (1990)

    Article  Google Scholar 

  3. Grainger, J.J., Stevenson Jr., W.D.: Power system analysis. McGraw-Hill, New York (1994)

    Google Scholar 

  4. Chiang, H., Hiu, C., Varaiya, P., Wu, F., Lauby, M.: Chaos in simple power system. IEEE Trans. Power Syst. 4(4), 1407–1417 (1993)

    Article  Google Scholar 

  5. Ajjarapn, V., Lee, B.: Bifurcation theory and its application to nonlinear dynamical phenomena in an electrical power system. IEEE Trans. Power Syst. 7(1), 424–431 (1992)

    Article  Google Scholar 

  6. Wong, K.P., Li, A., Law, M.Y.: Development of constrained-genetic-algorithm load-flow method. IEE Proc. Gener. Transm. Distrib. 144(2) (March 1997)

    Google Scholar 

  7. Wong, K.P., Li, A., Law, T.M.Y.: Advanced constrained genetic algorithm load flow method. IEE Proc. Gener. Transm. Distrib. 146(6) (November 1999)

    Google Scholar 

  8. Klos, A., Kerner, A.: The non-uniqueness of load-flow solutions. In: Proceedings of 5th Power system computation conference (PSCC), Cambridge, UK, July 1975, vol. 3.1(8) (1975)

    Google Scholar 

  9. Holland, J.H.: Adaptation in Natural and Artificial Systems. Univ. Michigan Press, Ann Arbor (1975)

    Google Scholar 

  10. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, p. 1942. IEEE Press, Los Alamitos (1995)

    Chapter  Google Scholar 

  11. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, May 4-9 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ting, T.O., Wong, K.P., Chung, C.Y. (2006). A Hybrid Genetic Algorithm/Particle Swarm Approach for Evaluation of Power Flow in Electric Network. In: Yeung, D.S., Liu, ZQ., Wang, XZ., Yan, H. (eds) Advances in Machine Learning and Cybernetics. Lecture Notes in Computer Science(), vol 3930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11739685_95

Download citation

  • DOI: https://doi.org/10.1007/11739685_95

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33584-9

  • Online ISBN: 978-3-540-33585-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics