Abstract
This paper contributes to the analysis and prediction of deviate intentional behaviour of human operators in Human-Machine Systems using Artificial Neural Networks that take uncertainty into account. Such deviate intentional behaviour is a particular violation, called Barrier Removal. The objective of the paper is to propose a predictive Benefit-Cost-Deficit model that allows a multi-reference, multi-factor and multi-criterion evaluation. Human operator evaluations can be uncertain. The uncertainty of their subjective judgements is therefore integrated into the prediction of the Barrier Removal. The proposed approach is validated on a railway application, and the prediction convergence of the uncertainty-integrating model is demonstrated.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Reason, J.: Human error. Cambridge University Press, Cambridge (1990)
Reason, J.: A system approach to organizational error. Ergonomics 38(8), 1708–1721 (1995)
Vanderhaegen, F.: Analyse et contrôle de l’erreur humaine. Hermes science, Paris (2003)
Zhang, Z., Polet, P., Vanderhaegen, F., Millot, P.: Artificial Neural Network for Violation Analysis. Reliability Engineering and System Safety 84(1), 3–18 (2004)
Zhang, Z., Vanderhaegen, F.: A method integrating Self-Organizing Maps to predict the probability of Barrier Removal. In: Bozdogan, H. (ed.) Statistical Data Mining and Knowledge Discovery, ch. 30. CRC Press, New York (2003)
Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2001)
Zhang, Z.: Fiabilité humaine: prédiction des violations par réseaux de neurones et application aux systèmes de transport. PhD Thesis, Universite de Valenciennes, France (March 2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, Z., Vanderhaegen, F., Millot, P. (2006). Prediction of Human Behaviour Using Artificial Neural Networks. In: Yeung, D.S., Liu, ZQ., Wang, XZ., Yan, H. (eds) Advances in Machine Learning and Cybernetics. Lecture Notes in Computer Science(), vol 3930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11739685_80
Download citation
DOI: https://doi.org/10.1007/11739685_80
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33584-9
Online ISBN: 978-3-540-33585-6
eBook Packages: Computer ScienceComputer Science (R0)