Monitoring Glaucomatous Progression: Classification of Visual Field Measurements Using Stable Reference Data | SpringerLink
Skip to main content

Monitoring Glaucomatous Progression: Classification of Visual Field Measurements Using Stable Reference Data

  • Conference paper
Advances in Machine Learning and Cybernetics

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3930))

  • 1187 Accesses

Abstract

Glaucoma is a common disease of the eye that often results in partial blindness. The main symptom of glaucoma is the progressive deterioration of the visual field. Glaucoma management involves monitoring the progress of the disease using regular visual field tests but currently there is no standard method for classifying changes in visual field measurements. Sequence matching techniques typically rely on similarity measures. However, visual field measurements are very noisy, particularly in people with glaucoma. It is therefore difficult to establish a reference data set including both stable and progressive visual fields. We describe method that uses a baseline computed from a query sequence, to match stable sequences in a database collected from volunteers. The results suggest that the new method is more accurate than other techniques for identifying progressive sequences, though there is a small penalty for stable sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mitchell, P., Smith, W., Attebo, K., Healey, P.R.: Prevalence of Open-Angle Glaucoma in Australia. The Blue Mountains Eye Study. Ophthalmology 103, 1661–1669 (1996)

    Google Scholar 

  2. Rochtchina, E., Mitchell, P.: Projected Number of Australians with Glaucoma in 2000 and 2030. Clin Experiment Ophthalmol 28, 146–148 (2000)

    Article  Google Scholar 

  3. Johnson, C.A., Sample, P.A., Zangwill, L.M., et al.: Structure and Function Evaluation (SAFE): 2. Comparison of Optic Disk and Visual Field Characteristics. American Journal of Ophthalmology 135, 148–154 (2003)

    Article  Google Scholar 

  4. Flammer, J., Drance, S.M., Zulauf, M.: Differential Light Threshold. Arch. Ophthalmol. 102, 704–706 (1984)

    Google Scholar 

  5. Heijl, A., Lindgren, G., Olsson, J., Asman, P.: Visual Field Interpretation with Empiric Probability Maps. Arch. Ophthalmol. 107, 204–208 (1989)

    Google Scholar 

  6. Katz, J., Congdon, N., Friedman, D.S.: Methodological Variations in Estimating Apparent Progressive Visual Field Loss in Clinical Trials of Glaucoma Treatment. Arch. Ophthalmol. 117, 1137–1142 (1999)

    Google Scholar 

  7. Lazarescu, M., Turpin, A.: Classifying Glaucomatous Progression using Decision Trees. In: Proceedings of IASTED International Symposia on Applied Informatics. Innsbruck, Austria, pp. 205–210 (2003)

    Google Scholar 

  8. Lin, A., Hoffman, D., Gaasterland, D.E., Caprioli, J.: Neural Networks to Identify Glaucomatous Visual Field Progression. American Journal of Ophthalmology 135, 49–54 (2003)

    Article  Google Scholar 

  9. Morgan, R.K., Feuer, W.J., Anderson, D.R.: Statpac 2 Glaucoma Change Probability. Arch. Ophthalmol. 109, 1690–1692 (1991)

    Google Scholar 

  10. Turpin, A., Frank, E., Hall, M., Witten, I.H., Johnson, C.A.: Detecting Progression in Glaucoma using Data Mining Techniques. In: Proceedings of the 5th Pacific Asia Conference on Knowledge Discovery and Data Mining, pp. 136–147 (2001)

    Google Scholar 

  11. Spry, P.G., Johnson, C.A., Chauhan, B.C.: Identification of Progressive Glaucomatous Visual Field Loss. Survey of Ophthalmology 47, 158–173 (2002)

    Article  Google Scholar 

  12. Lane, T., Brodley, C.E.: Sequence Matching and Learning in Anomaly Detection for Computer Security. In: Fawcett, H., Provost, S. (eds.) AI Approaches to Fraud Detection and Risk Management, pp. 43–49. AAAI Press, Menlo Park (1997)

    Google Scholar 

  13. Navarro, G.: A Guided Tour to Approximate String Matching. ACM Computing Surveys 33, 31–38 (2001)

    Article  Google Scholar 

  14. Anderson, D.R., Patella, V.M.: Automated Static Perimetry, 2nd edn., Mosby (1999)

    Google Scholar 

  15. Spry, P.G., Bates, A.B., Johnson, C.A., Chauhan, B.C.: Simulation of Longitudinal Threshold Visual Field Data. Investigative Ophthalmology and Visual Science 41, 2192–2200 (2000)

    Google Scholar 

  16. Vesti, E., Spry, P.G., Chauhan, B.C., Johnson, C.A.: Sensitivity Differences between Real Patient and Computer Stimulated Visual Fields. Journal of Glaucoma 11, 35–45 (2002)

    Article  Google Scholar 

  17. Heijl, A., Lindgren, A., Lindgren, G.: Test-Retest Variability in Glaucomatous Visual Fields. American Journal of Ophthalmology 108, 130–135 (1989)

    Google Scholar 

  18. Hughes, A., Grawoig, D.: Statistics: A Foundation for Analysis. Addison-Wesley, Reading (1971)

    Google Scholar 

  19. Henson, D.B., Chaudry, S., Artes, P.H., Faragher, E.B., Ansons, A.: Response Variability in the Visual Field: Comparison of Optic Neuritis, Glaucoma, Ocular Hypertension, and Normal Eyes. Investigative Ophthalmology and Visual Science 41, 417–421 (2000)

    Google Scholar 

  20. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 2nd edn. Chapman & Hall/CRC (2000)

    Google Scholar 

  21. Vesti, E., Johnson, C.A., Chauhan, B.C.: Comparison of Different Methods for Detecting Glaucomatous Visual Field Progression. Investigative Ophthalmology and Visual Science 44, 3873–3879 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meng, S., Lazarescu, M., Ivins, J., Turpin, A. (2006). Monitoring Glaucomatous Progression: Classification of Visual Field Measurements Using Stable Reference Data. In: Yeung, D.S., Liu, ZQ., Wang, XZ., Yan, H. (eds) Advances in Machine Learning and Cybernetics. Lecture Notes in Computer Science(), vol 3930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11739685_78

Download citation

  • DOI: https://doi.org/10.1007/11739685_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33584-9

  • Online ISBN: 978-3-540-33585-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics