Novel Nonlinear Signals Separation of Optimized Entropy Based on Adaptive Natural Gradient Learning | SpringerLink
Skip to main content

Novel Nonlinear Signals Separation of Optimized Entropy Based on Adaptive Natural Gradient Learning

  • Conference paper
Advances in Machine Learning and Cybernetics

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3930))

  • 1189 Accesses

Abstract

Without knowing the signal probability distribution and channel, novel blind source separation (BSS) of singular value decomposition (SVD) with adaptive minimizing mutual information is proposed to extract mixed signals. Adaptive natural gradient decent algorithm attains fast convergence speed and reliability. We focus on applying cost function BSS and SVD to achieve the solution of decomposition signals. The results indicate that the SVD combining minimizing mutual information can predict the extent of mixed signal and searching direction. The simulation illustrates that the method improves the performance, convergence and reliability. The different results can be attained by distinctive nonlinear function. The algorithm of adaptive changing de-mixed function is a better way to break through the limitation of nonlinear BSS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang, L., Amari, S.: Estimating function approach to multi-channel blind deconvolution. In: Circuits and Systems IEEE APCCAS 2000, vol. 12(4-6), pp. 587–590 (2000)

    Google Scholar 

  2. Amari, S.: Superefficiency in blind source separation. IEEE trans. on signal processing 47(4), 936–944 (1999)

    Article  Google Scholar 

  3. Tsatsanis, M.K., Giannakis, G.B.: Blind estimation of direct sequence spread spectrum signals in multipath. IEEE Trans. Signal Processing 45(5), 1241–1252 (1997)

    Article  Google Scholar 

  4. Tugnait, J.K.: Blind spatio-temporal equalization and impulse response estimation for MIMO channels using a Godard cost function. IEEE Trans. Signal Processing 45(1), 268–271 (1997)

    Article  MathSciNet  Google Scholar 

  5. Tugnait, J.K.: Adaptive blind separation of convolutive mixtures of independent linear signals. EURASIP Journal Signal Processing 73(1-2), 139–152 (1999)

    MATH  Google Scholar 

  6. Cruces-Alvarez, S.A., Cichocki, A., Amari, A.: From blind signal extraction to blind instantaneous signal separation: criteria, algorithms, and stability. IEEE Trans. on Neural Networks 15(4), 859–873 (2004)

    Article  Google Scholar 

  7. Belouchrani, A., Abed-Meraim, K.: Blind separation of nonstationary sources. IEEE Signal Processing Letters 11(7), 605–608 (2004)

    Article  Google Scholar 

  8. Ferreol, A., Chevalier, P.: Second-order blind separation of first- and second-order cyclostationary sources-application to AM, FSK, CPFSK, and deterministic sources. IEEE Trans. on Signal Processing 52(4), 845–861 (2004)

    Article  MathSciNet  Google Scholar 

  9. Asano, F., Ikeda, S., Ogawa, M., Asoh, H.: Combined approach of array processing and independent component analysis for blind separation of acoustic signals. IEEE Trans. Speech and Audio Processing 11(3), 204–210 (2003)

    Article  Google Scholar 

  10. Cardoso, J.-F., Souloumiac, A.: Blind beamforming for non Gaussian signals. IEE-Proceedings-F 140(6), 362–370 (1993)

    Google Scholar 

  11. Jutten, C., Herault, J.: Separation of sources. Part i. Signal Processing 24(1), 1–10 (1991)

    Article  MATH  Google Scholar 

  12. Bell, A.J., Sejnowski, T.J.: An information maximization approach to blind separation and blind deconvolution. Neural Computation 7(6), 1129–1159 (1995)

    Article  Google Scholar 

  13. Comon, P.: Independent component analysis, a new concept. Signal Processing 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  14. Amari, S., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems 8, 757–763 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ren, R., Xu, J., Zhu, S., Ren, D., Luo, Y. (2006). Novel Nonlinear Signals Separation of Optimized Entropy Based on Adaptive Natural Gradient Learning. In: Yeung, D.S., Liu, ZQ., Wang, XZ., Yan, H. (eds) Advances in Machine Learning and Cybernetics. Lecture Notes in Computer Science(), vol 3930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11739685_49

Download citation

  • DOI: https://doi.org/10.1007/11739685_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33584-9

  • Online ISBN: 978-3-540-33585-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics