Abstract
Without knowing the signal probability distribution and channel, novel blind source separation (BSS) of singular value decomposition (SVD) with adaptive minimizing mutual information is proposed to extract mixed signals. Adaptive natural gradient decent algorithm attains fast convergence speed and reliability. We focus on applying cost function BSS and SVD to achieve the solution of decomposition signals. The results indicate that the SVD combining minimizing mutual information can predict the extent of mixed signal and searching direction. The simulation illustrates that the method improves the performance, convergence and reliability. The different results can be attained by distinctive nonlinear function. The algorithm of adaptive changing de-mixed function is a better way to break through the limitation of nonlinear BSS.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhang, L., Amari, S.: Estimating function approach to multi-channel blind deconvolution. In: Circuits and Systems IEEE APCCAS 2000, vol. 12(4-6), pp. 587–590 (2000)
Amari, S.: Superefficiency in blind source separation. IEEE trans. on signal processing 47(4), 936–944 (1999)
Tsatsanis, M.K., Giannakis, G.B.: Blind estimation of direct sequence spread spectrum signals in multipath. IEEE Trans. Signal Processing 45(5), 1241–1252 (1997)
Tugnait, J.K.: Blind spatio-temporal equalization and impulse response estimation for MIMO channels using a Godard cost function. IEEE Trans. Signal Processing 45(1), 268–271 (1997)
Tugnait, J.K.: Adaptive blind separation of convolutive mixtures of independent linear signals. EURASIP Journal Signal Processing 73(1-2), 139–152 (1999)
Cruces-Alvarez, S.A., Cichocki, A., Amari, A.: From blind signal extraction to blind instantaneous signal separation: criteria, algorithms, and stability. IEEE Trans. on Neural Networks 15(4), 859–873 (2004)
Belouchrani, A., Abed-Meraim, K.: Blind separation of nonstationary sources. IEEE Signal Processing Letters 11(7), 605–608 (2004)
Ferreol, A., Chevalier, P.: Second-order blind separation of first- and second-order cyclostationary sources-application to AM, FSK, CPFSK, and deterministic sources. IEEE Trans. on Signal Processing 52(4), 845–861 (2004)
Asano, F., Ikeda, S., Ogawa, M., Asoh, H.: Combined approach of array processing and independent component analysis for blind separation of acoustic signals. IEEE Trans. Speech and Audio Processing 11(3), 204–210 (2003)
Cardoso, J.-F., Souloumiac, A.: Blind beamforming for non Gaussian signals. IEE-Proceedings-F 140(6), 362–370 (1993)
Jutten, C., Herault, J.: Separation of sources. Part i. Signal Processing 24(1), 1–10 (1991)
Bell, A.J., Sejnowski, T.J.: An information maximization approach to blind separation and blind deconvolution. Neural Computation 7(6), 1129–1159 (1995)
Comon, P.: Independent component analysis, a new concept. Signal Processing 36(3), 287–314 (1994)
Amari, S., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems 8, 757–763 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ren, R., Xu, J., Zhu, S., Ren, D., Luo, Y. (2006). Novel Nonlinear Signals Separation of Optimized Entropy Based on Adaptive Natural Gradient Learning. In: Yeung, D.S., Liu, ZQ., Wang, XZ., Yan, H. (eds) Advances in Machine Learning and Cybernetics. Lecture Notes in Computer Science(), vol 3930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11739685_49
Download citation
DOI: https://doi.org/10.1007/11739685_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33584-9
Online ISBN: 978-3-540-33585-6
eBook Packages: Computer ScienceComputer Science (R0)