Fuzzy Multiple Reference Models Adaptive Control Scheme Study | SpringerLink
Skip to main content

Fuzzy Multiple Reference Models Adaptive Control Scheme Study

  • Conference paper
Advances in Machine Learning and Cybernetics

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3930))

Abstract

A new method of fuzzy multiple reference models adaptive control (FMRMAC) for dealing with significant and unpredictable system parameter variations is presented. In this method, a suitable reference model is chosen by parameters estimation and fuzzy rules when changes occurred to the original model parameters. A successful application to the speed servo system of a dynamic model of a Brushless DC motor (BLDCM) shows this method works well with high dynamic performance under the condition of command speed change and load torque disturbance, so the applicability and validity of FMRMAC in pa-rameters variation system accommodation control was proven.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Michael, A.D., Rosen, I.G.: Variable structure model reference adaptive control of parabolic distributed parameter systems. In: Proceeding of the American Control Conference, Anchorage, pp. 4371–4376 (2002)

    Google Scholar 

  2. Mitsuru, K., Masayoshi, T.: Model reference adaptive control of linear systems with input saturation. In: Proceeding of the 2004 IEEE International Conference on Control Application, Taipei, Taiwan, pp. 1318–1323 (2004)

    Google Scholar 

  3. Daniel, E.M.: A new approach to model reference adaptive control. IEEE Trans. Automatic Control. 48, 743–757 (2003)

    Article  Google Scholar 

  4. Alvaro, K., Ramon, R., Liu, H., et al.: Multivariable adaptive control using high-frequency gain matrix factorization. IEEE Trans. Automatic Control. 49, 1152–1157 (2004)

    Article  Google Scholar 

  5. Narendra, K., Balakrishnan, J.: Adaptive control using multiple models. IEEE Trans. Automatic Control. 42, 171–187 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Wang, Y., Liu, W.: A kind of PID-typed fuzzy neural network controller. Journal of System Simulation 15, 389–392 (2003)

    Google Scholar 

  7. Sukumar, K.: A new generation of adaptive control: an intelligent supervisory approach. Toledo University, Toledo (2004)

    Google Scholar 

  8. Sukumar, K., Adel, A.G., Khalid, S.A.: A fuzzy multiple reference model adaptive control scheme for flexible link robotic manipulator. In: Proceeding of the 2004 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, Boston, pp. 162–167 (2004)

    Google Scholar 

  9. Zhang, B., Li, Z., Mao, Z.: Mathematical model of permanent-magnet synchronous motors and its fuzzy modeling. Control theory and application 19, 841–844 (2002)

    Google Scholar 

  10. Ji, Z., Shen, Y., Jiang, J.: A novel method for modeling and simulation of BLDC system based on Matlab. Journal of System Simulation 15, 1745–1749 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ji, Z., Zhu, R., Shen, Y. (2006). Fuzzy Multiple Reference Models Adaptive Control Scheme Study. In: Yeung, D.S., Liu, ZQ., Wang, XZ., Yan, H. (eds) Advances in Machine Learning and Cybernetics. Lecture Notes in Computer Science(), vol 3930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11739685_41

Download citation

  • DOI: https://doi.org/10.1007/11739685_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33584-9

  • Online ISBN: 978-3-540-33585-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics