An Ant Clustering Method for a Dynamic Database | SpringerLink
Skip to main content

An Ant Clustering Method for a Dynamic Database

  • Conference paper
Advances in Machine Learning and Cybernetics

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3930))

  • 1206 Accesses

Abstract

We propose an adaptive ant colony data clustering algorithm for a dynamic database. The algorithm uses a digraph where the vertices represent the data to be clustered. The weight of the edge represents the acceptance rate between the two data connected by the edge. The pheromone on the edges is adaptively updated by the ants passing through it. Some edges with less pheromone are progressively removed under a list of thresholds in the process. Strong connected components of the final digraph are extracted as clusters. Experimental results on several real datasets and benchmarks indicate that the algorithm can find clusters more quickly and with better quality than K-means and LF. In addition, when the database is changed, the algorithm can dynamically modify the clusters accordingly to maintain its accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kaufman, L., Pierreux, A., Rousseuw, P., Derde, M.P., Detaecernier, M.R., Massart, D.L., Platbrood, G.: Clustering on a Microcomputer with an Application to the Classification of Coals. Analytica Chimica Acta 153, 257–260 (1983)

    Article  Google Scholar 

  2. Lawson, R.G., Jurs, P.C.: Cluster Analysis of Acrylates to Guide Sampling for Toxicity Testing. Journal of Chemical Information and Computer Science 30(1), 137–144 (1990)

    Google Scholar 

  3. Beckers, M.L.M., Melssen, W.J., Buydens, L.M.C.: A self-organizing feature map for clustering nucleic acids. Application to a data matrix containing A-DNA and B-DNA dinucleotides. Comput. Chem. 21, 377–390 (1997)

    Article  Google Scholar 

  4. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  5. Bonabeau, E., Dorigo, M., Théraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. In: Santa Fe Institute in the Sciences of the Complexity. Oxford University Press, Oxford (1999)

    Google Scholar 

  6. Dorigo, M., Maniezzo, V., Colomi, A.: Ant system: Optimization by a colony of coorperating agents. IEEE Transactions on Systems, Man and Cybernetics-Part B 26(1), 29–41 (1996)

    Article  Google Scholar 

  7. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. on Evolutionary Computation 1(1), 53–66 (1997)

    Article  Google Scholar 

  8. Stutzle, T., Hoos, H.: MAX-MIN Ant systems. Future Generation Computer Sytems 16, 889–914 (2000)

    Article  Google Scholar 

  9. Dorigo, M., Gambardella, L.M.: Ant colonies for the traveling salesman problem. BioSystems 43(2), 73–81 (1997)

    Article  Google Scholar 

  10. Chang, C.S., Tian, L., Wen, F.S.: A new approach to fault section in power systems using Ant System. Electric Power Systems Research 49(1), 63–70 (1999)

    Article  Google Scholar 

  11. Gambardella, L.M., Dorigo, M.: HAS-SOP: An Hybrid Ant System for the Sequential Ordering Problem. Tech. Rep. No. IDSIA 97-11, IDSIA, Lugano Switzerland (1997)

    Google Scholar 

  12. Kuntz, P., Layzell, P., Snyder, D.: A colony of ant-like agents for partitioning in VLSI technology. In: Husbands, P., Harvey, I. (eds.) Proceedings of the Fourth European Conference on Artificial Life, pp. 412–424. MIT Press, Cambridge (1997)

    Google Scholar 

  13. Kuntz, P., Snyder, D.: New results on ant-based heuristic for highlighting the organization of large graphs. In: Proceedings of the 1999 Congress or Evolutionary Computation, pp. 1451–1458. IEEE Press, Piscataway (1999)

    Google Scholar 

  14. Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chretien, L.: The Dynamic of Collective Sorting Robot-like Ants and Ant-like Robots. In: Meyer, J.A., Wilson, S.W. (eds.) SAB 1990-1st Conf. On Simulation of Adaptive Behavior: From Animals to Animats, pp. 356–365. MIT Press, Cambridge (1991)

    Google Scholar 

  15. Lumer, E., Faieta, B.: Diversity and adaptation in populations of clustering ants. In: Meyer, J.A., Wilson, S.W. (eds.) Proceedings of the Third International Conference on Simulation of Adaptive Behavior: From Animates, vol. 3, pp. 501–508. MIT Press/ Bradford Books, Cambridge (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, L., Tu, L., Chen, Y. (2006). An Ant Clustering Method for a Dynamic Database. In: Yeung, D.S., Liu, ZQ., Wang, XZ., Yan, H. (eds) Advances in Machine Learning and Cybernetics. Lecture Notes in Computer Science(), vol 3930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11739685_18

Download citation

  • DOI: https://doi.org/10.1007/11739685_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33584-9

  • Online ISBN: 978-3-540-33585-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics