Continuous Speech Recognition Based on ICA and Geometrical Learning | SpringerLink
Skip to main content

Continuous Speech Recognition Based on ICA and Geometrical Learning

  • Conference paper
Advances in Machine Learning and Cybernetics

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3930))

  • 1193 Accesses

Abstract

We investigate the use of independent component analysis (ICA) for speech feature extraction in digits speech recognition systems. We observe that this may be true for recognition tasks based on Geometrical Learning with little training data. In contrast to image processing, phase information is not essential for digits speech recognition. We therefore propose a new scheme that shows how the phase sensitivity can be removed by using an analytical description of the ICA-adapted basis functions. Furthermore, since the basis functions are not shift invariant, we extend the method to include a frequency-based ICA stage that removes redundant time shift information. The digits speech recognition results show promising accuracy. Experiments show that the method based on ICA and Geometrical Learning outperforms HMM in a different number of training samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amari, S.: Neural learning in structured parameter spaces—natural Riemannian gradient. In: Advances in Neural Information Processing System, vol. 9, pp. 127–133. MIT Press, Cambridge (1997)

    Google Scholar 

  2. Bell, A., Sejnowski, T.: An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159 (1995)

    Article  Google Scholar 

  3. Bell, A.J., Sejnowski, T.J.: Learning the higher-order structure of a natural sound. Network Comput. Neural Syst. 7, 261–266 (1996)

    Article  MATH  Google Scholar 

  4. Bell, A.J., Sejnowski, T.J.: The ‘independent components’ of natural scenes are edge filters. Vision Res. 37(23), 3327–3338 (1997)

    Article  Google Scholar 

  5. Box, G.E.P., Tiao, G.C.: Bayesian Inference in Statistical Analysis. Wiley, New York (1992)

    MATH  Google Scholar 

  6. Lee, J.H., Jung, H.Y., Lee, T.W., Lee, S.Y.: Speech feature extraction using independent component analysis. In: Proceedings of the International Conference Acoustics, Speech, Signal Processing, Istanbul, Turkey, June 2000, pp. 1631–1634 (2000)

    Google Scholar 

  7. Lee, J.-H., Lee, T.-W., Jung, H.-Y., Lee, S.-Y.: On the efficient speech feature extraction based on independent component analysis. Neural Process. Lett. 15(3), 235–245 (2002)

    Article  MATH  Google Scholar 

  8. ShouJue, W.: A new development on ANN in China - Biomimetic pattern recognition and multi weight vector neurons. LNCS (LNAI), vol. 2639, pp. 35–43. Springer, Heidelberg (2003)

    Google Scholar 

  9. Shoujue, W., et al.: Multi Camera Human Face Personal Identification System Based on Biomimetic pattern recognition. Acta Electronica Sinica 31(1), 1–3 (2003)

    Google Scholar 

  10. Shoujue, W., et al.: Discussion on the basic mathematical models of Neurons in General purpose Neurocomputer. Acta Electronica Sinica 29(5), 577–580 (2001)

    Google Scholar 

  11. Wang, X., Wang, S.: The Application of Feedforward Neural Networks in VLSI Fabrication Process Optimization. International Journal of Computational Intelligence and Applications 1(1), 83–90 (2001)

    Article  Google Scholar 

  12. Cao, W., Hao, F., Wang, S.: The application of DBF neural networks for object recognition. Inf. Sci. 160(1-4), 153–160 (2004)

    Article  Google Scholar 

  13. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)

    Book  Google Scholar 

  14. Cao, W.M.: Similarity index for clustering DNA microarray data based on multi-weighted neuron. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 402–408. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Cao, W.M., Hu, J.H., Xiao, G., et al.: Application of multi-weighted neuron for iris recognition. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 87–92. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Cao, W.M.: The application of Direction basis function neural networks to the prediction of chaotic time series. Chinese Journal of Electronics 13(3), 395–398 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feng, H., Cao, W., Wang, S. (2006). Continuous Speech Recognition Based on ICA and Geometrical Learning. In: Yeung, D.S., Liu, ZQ., Wang, XZ., Yan, H. (eds) Advances in Machine Learning and Cybernetics. Lecture Notes in Computer Science(), vol 3930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11739685_102

Download citation

  • DOI: https://doi.org/10.1007/11739685_102

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33584-9

  • Online ISBN: 978-3-540-33585-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics