Markov Methods for Hierarchical Coarse-Graining of Large Protein Dynamics | SpringerLink
Skip to main content

Markov Methods for Hierarchical Coarse-Graining of Large Protein Dynamics

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3909))

Abstract

Elastic network models (ENMs), and in particular the Gaussian Network Model (GNM), have been widely used in recent years to gain insights into the machinery of proteins. The extension of ENMs to supramolecular assemblies/complexes presents computational challenges, however, due to the difficulty of retaining atomic details in mode decomposition of large systems’ dynamics. Here, we present a novel approach to address this problem. Based on a Markovian description of communication/interaction stochastics, we map the full-atom GNM representation into a hierarchy of lower resolution networks, perform the analysis in the reduced space(s) and reconstruct the detailed models’ dynamics with minimal loss of data. The approach (hGNM) applied to chaperonin GroEL-GroES demonstrates that the shape and frequency dispersion of the dominant 25 modes of motion predicted by a full-residue (8015 nodes) GNM analysis are almost identically reproduced by reducing the complex into a network of 35 soft nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ma, J.: Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular systems. Structure 13, 373–380 (2005)

    Article  Google Scholar 

  2. Bahar, I., Rader, A.J.: Coarse-grained normal mode analysis in structural biology. Curr. Opi. Struct. Bio. 15, 1–7 (2005)

    Article  Google Scholar 

  3. Rader, A.J., Chennubhotla, C., Yang, L.-W., Bahar, I.: The Gaussian Network Model: Theory and Applications. In: Cui, Q., Bahar, I. (eds.) Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems. CRC Press, Boca Raton (2005)

    Google Scholar 

  4. Bahar, I., Atilgan, A.R., Erman, B.: Direct evaluation of thermal fluctuations in protein using a single parameter harmonic potential. Folding & Design 2, 173–181 (1997)

    Article  Google Scholar 

  5. Haliloglu, T., Bahar, I., Erman, B.: Gaussian dynamics of folded proteins. Phys. Rev. Lett. 79, 3090 (1997)

    Article  Google Scholar 

  6. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Research 28, 235–242 (2000)

    Article  Google Scholar 

  7. Miyazawa, S., Jernigan, R.L.: Estimation of effective inter-residue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18, 534 (1985)

    Article  Google Scholar 

  8. Bahar, I., Jernigan, R.L.: Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation. J. Mol. Biol. 266, 195 (1997)

    Article  Google Scholar 

  9. Chung, F.R.K.: Spectral Graph Theory. CBMS Lectures, AMS (1997)

    Google Scholar 

  10. Doruker, P., Atilgan, A.R., Bahar, I.: Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: Application to α-amylase inhibitor. Proteins 40, 512–524 (2000)

    Article  Google Scholar 

  11. Atilgan, A.R., Durell, S.R., Jernigan, R.L., Demirel, M.C., Keskin, O., Bahar, I.: Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 80, 505 (2001)

    Article  Google Scholar 

  12. Hinsen, K.: Analysis of domain motions by approximate normal mode calculations. Proteins 33, 417 (1998)

    Article  Google Scholar 

  13. Tama, F., Sanejouand, Y.H.: Conformational change of proteins arising from normal mode calculations. Protein Eng. 14, 1–6 (2001)

    Article  Google Scholar 

  14. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK User Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods, TR, Dept. of CAM, Rice University (1996)

    Google Scholar 

  15. Simon, H., Zha, H.: Low-rank matrix approximation using the Lanczos bidiagonalization process with applications. SIAM J. of Sci. Comp. 21, 2257–2274 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Barnard, S., Simon, H.: A fast multi-level implementation of recursive spectral bisection for partitioning usntructured grid. Concurrency: Practice and Experience 6, 101–117 (1994)

    Article  Google Scholar 

  17. Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral Grouping Using the Nyström Method. IEEE PAMI 26, 2 (2004)

    Google Scholar 

  18. Koren, Y., Carmel, L., Harel, D.: Drawing Huge Graphs by Algebraic Multigrid Optimization. Multiscale Modeling and Simulation 1(4), 645–673 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Doruker, P., Jernigan, R.L., Bahar, I.: Dynamics of large proteins through hierarchical levels of coarse-grained structures. J. Comp. Chem. 23, 119 (2002)

    Article  Google Scholar 

  20. Kurkcuoglu, O., Jernigan, R.L., Doruker, P.: Mixed levels of coarse-graining of large proteins using elastic network model methods in extracting the slowest motions. Polymers 45, 649–657 (2004)

    Article  Google Scholar 

  21. Marques, O.: BLZPACK: Description and User’s Guide, TR/PA/95/30, CERFACS, Toulouse, France (1995)

    Google Scholar 

  22. Tama, F., Gadea, F.X., Marques, O., Sanejouand, Y.H.: Building-block approach for determining low-frequency normal modes of macromolecules. Proteins 41, 1–7 (2000)

    Article  Google Scholar 

  23. Li, G.H., Cui, Q.: A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca2 + -ATPase. Bipohys. J. 83, 2457 (2002)

    Article  Google Scholar 

  24. Chennubhotla, C., Jepson, A.: Hierarchical Eigensolver for Transition Matrices in Spectral Methods. NIPS 17, 273–280 (2005)

    Google Scholar 

  25. McLachlan, G.J., Basford, K.E.: Mixture Models: Inference and Applications to Clustering. Marcel Dekker, N.Y (1988)

    MATH  Google Scholar 

  26. Kullback, S.: Information Theory and Statistics. Dover Publications, New York (1959)

    MATH  Google Scholar 

  27. Kullback, S., Leibler, R.A.: On Information and Sufficiency. Ann. of Math. Stat. 22, 79–86 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  28. Xu, Z.H., Horwich, A.L., Sigler, P.B.: The crystal structure of the asymmetric GroEL-GroES(ADP)7 chaperonin complex. Nature 388, 741–750 (1997)

    Article  Google Scholar 

  29. Keskin, O., Bahar, I., Flatow, D., Covell, D.G., Jernigan, R.L.: Molecular Mechanisms of Chaperonin GroEL-GroES Function. Biochemistry 41, 491–501 (2002)

    Article  Google Scholar 

  30. Watkins, D.S.: Fundamentals of Matrix Computations. Wiley-Interscience, New York (2002)

    Book  MATH  Google Scholar 

  31. Kundu, S., Melton, J.S., Sorensen, D.C., Phillips, G.N.: Dynamics of proteins in crystals: comparison of experiment with imple models. Biophys. J. 83, 723–732 (2002)

    Article  Google Scholar 

  32. Landry, S.J., Zeilstra-Ryalls, J., Fayet, O., Georgopoulos, C., Gierasch, L.M.: Characterization of a functionally important mobile domain of GroES. Nature 364, 255–258 (1993)

    Article  Google Scholar 

  33. Hohfeld, J., Hartl, F.U.: Role of the chaperonin cofactor Hsp10 in protein folding and sorting in yeast mitochondria. J. Cell Biol. 126, 305–315 (1994)

    Article  Google Scholar 

  34. Kovalenko, O., Yifrach, O., Horovitz, A.: Residue lysine-34 in GroES modulates allosteric transitions in GroEL. Biochemistry 33, 14974–14978 (1994)

    Article  Google Scholar 

  35. Richardson, A., van der Vies, S.M., Keppel, F., Taher, A., Landry, S.J., Georgopoulos, C.: Compensatory changes in GroEL/Gp31 affinity as a mechanism for allele-specific genetic interaction. J. Biol. Chem. 274, 52–58 (1999)

    Article  Google Scholar 

  36. Richardson, A., Georgopoulos, C.: Genetic analysis of the bacteriophage T4-encoded cochaperonin Gp31. Genetics 152, 1449–1457 (1999)

    Google Scholar 

  37. Richardson, A., Schwager, F., Landry, S.J., Georgopoulos, C.: The importance of a mobile loop in regulating chaperonin/ co-chaperonin interaction: humans versus Escherichia coli. J. Biol. Chem. 276, 4981–4987 (2001)

    Article  Google Scholar 

  38. Shewmaker, F., Maskos, K., Simmerling, C., Landry, S.J.: A mobile loop order-disorder transition modulates the speed of chaperoin cycling. J. Biol. Chem. 276, 31257–31264 (2001)

    Article  Google Scholar 

  39. Ma, J., Sigler, P.B., Xu, Z.H., Karplus, M.: A Dynamic Model for the Allosteric Mechanism of GroEL. J. Mol. Biol. 302, 303–313 (2000)

    Article  Google Scholar 

  40. Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D.C., Joachimiak, A., Horwich, A.L., Sigler, P.B.: The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371, 578–586 (1994)

    Article  Google Scholar 

  41. Yifrach, O., Horovitz, A.: Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry 34, 5303–5308 (1995)

    Article  Google Scholar 

  42. Saibil, H.R., Ranson, N.R.: The chaperonin folding machine. Trends in Biochem. Sci. 27, 627–632 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chennubhotla, C., Bahar, I. (2006). Markov Methods for Hierarchical Coarse-Graining of Large Protein Dynamics. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2006. Lecture Notes in Computer Science(), vol 3909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732990_32

Download citation

  • DOI: https://doi.org/10.1007/11732990_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33295-4

  • Online ISBN: 978-3-540-33296-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics