Evolutionary Generation of Prototypes for a Learning Vector Quantization Classifier | SpringerLink
Skip to main content

Evolutionary Generation of Prototypes for a Learning Vector Quantization Classifier

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3907))

Included in the following conference series:

Abstract

An evolutionary computation based algorithm for data classification is presented. The proposed algorithm refers to the learning vector quantization paradigm and is able to evolve sets of points in the feature space in order to find the class prototypes. The more remarkable feature of the devised approach is its ability to discover the right number of prototypes needed to perform the classification task without requiring any a priori knowledge on the properties of the data analyzed. The effectiveness of the approach has been tested on satellite images and the obtained results have been compared with those obtained by using other classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & sons, Inc., Chichester (2001)

    MATH  Google Scholar 

  2. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  3. Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.): IWLCS 1999. LNCS (LNAI), vol. 1813. Springer, Heidelberg (2000)

    Google Scholar 

  4. Giordana, A., Neri, F.: Search-intensive concept induction. Evolutionary Computation 3, 375–416 (1995)

    Article  Google Scholar 

  5. Greene, D.P., Smith, S.F.: Competition-based induction of decision models from examples. Machine Learning, 229–257 (1993)

    Google Scholar 

  6. Janikow, C.Z.: A knowledge-intensive genetic algorithm for supervised learning. Machine Learning, 189–228 (1993)

    Google Scholar 

  7. De Jong, K.A., Spears, W.M., Gordon, D.F.C., Janikow, Z.: Using genetic algorithms for concept learning. Machine Learning, 161–188 (1993)

    Google Scholar 

  8. Agnelli, D., Bollini, A., Lombardi, L.: Image classification: an evolutionary approach. Pattern Recognition Letters 23, 303–309 (2002)

    Article  MATH  Google Scholar 

  9. Rauss, P.J., Daida, J.M., Chaudhary, S.A.: Classification of spectral image using genetic programming. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 726–733 (2000)

    Google Scholar 

  10. Kishore, J.K., Patnaik, L.M., Mani, V., Agrawal, V.K.: Application of genetic programming for multicategory pattern classification. IEEE Transactions on Evolutionary Computation 4, 242–258 (2000)

    Article  Google Scholar 

  11. Mendes, R., Voznika, F., Freitas, A., Nievola, J.: Discovering fuzzy classification rules with genetic programming and co-evolution. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 314–325. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer-Verlag New York, Inc., Secaucus (2001)

    MATH  Google Scholar 

  13. Karayiannis, N.B.: Learning vector quantization: A review. International Journal of Smart Engineering System Design 1, 33–58 (1997)

    Google Scholar 

  14. Muhlenbein, H., Schlierkamp-Voosen, D.: The science of breeding and its application to the breeder genetic algorithm (bga). Evolutionary Computation 1, 335–360 (1993)

    Article  Google Scholar 

  15. Blickle, T., Thiele, L.: A comparison of selection schemes used in genetic algorithms. Technical Report 11, Swiss Federal Institute of Technology (ETH), Gloriastrasse 35, 8092 Zurich, Switzerland (1995)

    Google Scholar 

  16. D’Elia, C., Poggi, G., Scarpa, G.: A tree-structured random markov field model for bayesian image segmentation. IEEE Transactions on Image Processing 12, 1259–1273 (2003)

    Article  MathSciNet  Google Scholar 

  17. Ahalt, S., Krishnamurthy, A., Chen, P., Melton, D.: Competitive learning algorithms for vector quantizationn. Neural Networks 3, 277–290 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cordella, L.P., De Stefano, C., Fontanella, F., Marcelli, A. (2006). Evolutionary Generation of Prototypes for a Learning Vector Quantization Classifier. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2006. Lecture Notes in Computer Science, vol 3907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732242_35

Download citation

  • DOI: https://doi.org/10.1007/11732242_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33237-4

  • Online ISBN: 978-3-540-33238-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics