Abstract
The required learning time and curse of dimensionality restrict the applicability of Reinforcement Learning(RL) on real robots. Difficulty in inclusion of initial knowledge and understanding the learned rules must be added to the mentioned problems. In this paper we address automatic state abstraction and creation of hierarchies in RL agent’s mind, as two major approaches for reducing the number of learning trials, simplifying inclusion of prior knowledge, and making the learned rules more abstract and understandable. We formalize automatic state abstraction and hierarchy creation as an optimization problem and derive a new algorithm that adapts decision tree learning techniques to state abstraction. The proof of performance is supported by strong evidences from simulation results in nondeterministic environments. Simulation results show encouraging enhancements in the required number of learning trials, agent’s performance, size of the learned trees, and computation time of the algorithm.
Keywords: State Abstraction, Hierarchical Reinforcement Learning
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Rights and permissions
About this paper
Cite this paper
Asadpour, M., Ahmadabadi, M.N., Siegwart, R. Reduction of Learning Time for Robots Using Automatic State Abstraction. In: Christensen, H.I. (eds) European Robotics Symposium 2006. Springer Tracts in Advanced Robotics, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11681120_7
Download citation
DOI: https://doi.org/10.1007/11681120_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32689-2
Online ISBN: 978-3-540-32689-2
eBook Packages: EngineeringEngineering (R0)