Abstract
Linear instantaneous independent component analysis (ICA) is a well-known problem, for which efficient algorithms like FastICA and JADE have been developed. Nevertheless, the development of new contrasts and optimization procedures is still needed, e.g. to improve the separation performances in specific cases. For example, algorithms may exploit prior information, such as the sparseness or the non-negativity of the sources. In this paper, we show that support-width minimization-based ICA algorithms may outperform other well-known ICA methods when extracting bounded sources. The output supports are estimated using symmetric differences of order statistics.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Vrins, F., Jutten, C., Verleysen, M.: SWM: a Class of Convex Contrasts for Source Separation. In: Proc. ICASSP, IEEE Int. Conf. on Acoustics, Speech and Sig. Process., Philadelphia, USA, pp. V.161–V.164 (2005)
Vrins, F., Verleysen, M.: Minimum Support ICA Using Order Statistics. Part I: Quasi-Range Based Support Estimation. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 262–269. Springer, Heidelberg (2006)
Vrins, F., Lee, J.A., Verleysen, M.: Filtering-free Blind Separation of Correlated Images. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 1091–1099. Springer, Heidelberg (2005)
Pham, D.T., Vrins, F.: Local Minima of Information-Theoretic Criteria in Blind Source Separation. IEEE Sig. Process. Lett. 12(11), 788–791 (2005)
Pham, D.-T.: Blind Separation of Instantaneous Mixture of Sources Based on Order Statistics. IEEE Trans. Sig. Process. 48(2), 363–375 (2000)
Lee, J.A., Vrins, F., Verleysen, M.: A Simple ICA Algorithm for Non-Differentiable Contrasts. In: Proc. EUSIPCO, Eur. Sig. Process. Conf., Antalya, Turkey, p. cr.1412.1-4 (2005)
Theis, F.J., Gruber, P.: Separability of Analytic Postnonlinear Blind Source Separation with Bounded Sources. In: Proc. ESANN, Eur. Symp. Art. Neur. Net., Bruges, Belgium, pp. 217–222 (2004)
Theis, F.J., Georgiev, P., Cichocki, A.: Robust Overcomplete Matrix Recovery for Sparse Sources Using a Genralized Hough Transform. In: Proc. ESANN, Eur. Symp. Art. Neur. Net., Bruges, Belgium (2004)
Plumbley, M.D.: Algorithms for Nonnegative Independent Component Analysis. IEEE Trans. Neur. Net. 4(3), 534–543 (2003)
Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley series on adaptive and learning systems for signal processing. Wiley, New York (2001)
Hyvarinen, A., Oja, E.: A Fast Fixed-point Algorithm Independent Component Analysis. Neur. Comp. 9(7), 1483–1492 (1997)
Cardoso, J.F., Souloumiac, A.: Blind Beamforming for Non-Gaussian Signals. IEE Proc.-F 140(6), 362–370 (1993)
Molgedey, J., Schuster, H.G.: Separation of a Mixture of Independent Signals Using Time Delayed Correlations. Phys. Rev. Lett. 72, 3634–3636 (1994)
Cruces, S., Duran, I.: The Minimum Support Criterion for Blind Source Extraction: a Limiting Case of the Strengthened Young’s Inequality. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 57–64. Springer, Heidelberg (2004)
Hoel, P.G.: Introduction to Mathematical Statistics. Wiley series in probability and mathematical statistics. Wiley, New York (1975)
Chu, J.T.: Some Uses of Quasi-Ranges. Ann. Math. Statist. 28, 173–180 (1957)
David, H.A.: Order Statistics. Wiley series in probability and mathematical statistics. Wiley, New York (1970)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vrins, F., Verleysen, M. (2006). Minimum Support ICA Using Order Statistics. Part II: Performance Analysis. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2006. Lecture Notes in Computer Science, vol 3889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11679363_34
Download citation
DOI: https://doi.org/10.1007/11679363_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32630-4
Online ISBN: 978-3-540-32631-1
eBook Packages: Computer ScienceComputer Science (R0)