Generating Cut Conjunctions and Bridge Avoiding Extensions in Graphs | SpringerLink
Skip to main content

Generating Cut Conjunctions and Bridge Avoiding Extensions in Graphs

  • Conference paper
Algorithms and Computation (ISAAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3827))

Included in the following conference series:

Abstract

Let G=(V,E) be an undirected graph, and let B ⊆ V ×V be a collection of vertex pairs. We give an incremental polynomial time algorithm to enumerate all minimal edge sets X ⊆ E such that every vertex pair (s,t) ∈ B is disconnected in \((V,E \smallsetminus X)\), generalizing well-known efficient algorithms for enumerating all minimal s-t cuts, for a given pair s,tV of vertices. We also present an incremental polynomial time algorithm for enumerating all minimal subsets X ⊆ E such that no (s,t) ∈ B is a bridge in (V,XB). These two enumeration problems are special cases of the more general cut conjunction problem in matroids: given a matroid M on ground set S=EB, enumerate all minimal subsets X ⊆ E such that no element bB is spanned by \(E \smallsetminus X\). Unlike the above special cases, corresponding to the cycle and cocycle matroids of the graph (V,EB), the enumeration of cut conjunctions for vectorial matroids turns out to be NP-hard.

This research was partially supported by the National Science Foundation (Grant IIS-0118635), and by DIMACS, the National Science Foundation’s Center for Discrete Mathematics and Theoretical Computer Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 18303
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Khachiyan, L., Makino, K.: Enumerating cut conjunctions in graphs and related problems. Rutcor Research Report RRR 19-2005, Rutgers University

    Google Scholar 

  2. Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L., Makino, K.: Generating paths and cuts in multi-pole (di)graphs. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 298–309. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L., Makino, K.: On the complexity of some enumeration problems for matroids. To appear in SIAM Journal on Discrete Mathematics (2005)

    Google Scholar 

  4. Eiter, T., Gottlob, G.: Identifyig the minimal transversals of a hypergraph and related problems. SIAM Journal on Computing 24, 1278–1304 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fredman, M., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. Journal of Algorithms 21, 618–628 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lawler, E., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal independent sets: NP-hardness and polynomial-time algorithms. SIAM Journal on Computing 9, 558–565 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  7. Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (1992)

    MATH  Google Scholar 

  8. Read, R.C., Tarjan, R.E.: Bounds on backtrack algorithms for listing cycles, paths, and spanning trees. Networks 5, 237–252 (1975)

    MATH  MathSciNet  Google Scholar 

  9. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. B, p. 654. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  10. Tsukiyama, S., Shirakawa, I., Ozaki, H., Ariyoshi, H.: An algorithm to enumerate all cutsets of a graph in linear time per cutset. Journal of the Association for Computing Machinery 27, 619–632 (1980)

    MATH  MathSciNet  Google Scholar 

  11. Vazirani, V.: Approximation Algorithms. Springer, Heidelberg (2001)

    Google Scholar 

  12. Welsh, D.J.A.: Matroid Theory. Academic Press, London (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Makino, K. (2005). Generating Cut Conjunctions and Bridge Avoiding Extensions in Graphs. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_17

Download citation

  • DOI: https://doi.org/10.1007/11602613_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30935-2

  • Online ISBN: 978-3-540-32426-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics