Approximation Algorithms for Computing the Earth Mover’s Distance Under Transformations | SpringerLink
Skip to main content

Approximation Algorithms for Computing the Earth Mover’s Distance Under Transformations

  • Conference paper
Algorithms and Computation (ISAAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3827))

Included in the following conference series:

Abstract

The Earth Mover’s Distance (EMD) on weighted point sets is a distance measure with many applications. Since there are no known exact algorithms to compute the minimum EMD under transformations, it is useful to estimate the minimum EMD under various classes of transformations. For weighted point sets in the plane, we will show a 2-approximation algorithm for translations, a 4-approximation algorithm for rigid motions and an 8-approximation algorithm for similarity transformations. The runtime for translations is O(T EMD(n,m)), the runtime of the latter two algorithms is O(nmT EMD(n,m)), where T EMD(n,m) is the time to compute the EMD between two fixed weighted point sets with n and m points, respectively. All these algorithms are based on a more general structure, namely on reference points. This leads to elegant generalizations to higher dimensions. We give a comprehensive discussion of reference points for weighted point sets with respect to the EMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alt, H., Aichholzer, O., Rote, G.: Matching Shapes with a Reference Point. In: Proc. 10th Annual Symposium on Computational Geometry, pp. 85–92 (1994)

    Google Scholar 

  2. Alt, H., Behrends, B., Blömer, J.: Approximate Matching of Polygonal Shapes. In: Proc. 7th Ann. Symp. on Comp. Geometry, pp. 186–193 (1991)

    Google Scholar 

  3. Alt, H., Fuchs, U., Rote, G., Weber, G.: Matching Convex Shapes with Respect to the Symmetric Difference. In: Díaz, J. (ed.) ESA 1996. LNCS, vol. 1136, pp. 320–333. Springer, Heidelberg (1996)

    Google Scholar 

  4. Cabello, S., Giannopoulos, P., Knauer, C., Rote, G.: Matching Point Sets with respect to the Earth Mover’s Distance. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 520–531. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Cohen, S.: Finding Color and Shape Patterns in Images. PhD thesis, Stanford University, Department of Compute Science (1999)

    Google Scholar 

  6. Giannopoulos, P., Veltkamp, R.: A pseudo-metric for weighted point sets. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 715–730. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Graumann, K., Darell, T.: Fast contour matching using approximate Earth Mover’s Distance. In: ECCV 2002. LNCS, vol. 2352, pp. I: 220–227 (2004)

    Google Scholar 

  8. Klein, O., Veltkamp, R.C.: Approximation Algorithms for the Earth Mover’s Distance Under Transformations Using Reference Points. Technical Report UU-CS- 2005-003 (2005), http://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-2005/2005-003.pdf

  9. Orlin, J.B.: A Faster Strongly Polynomial Minimum Cost Flow Algorithm. Operations Research 41(2), 338–350 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth Mover’s Distance as a Metric for Image Retrieval. Int. J. of Comp. Vision 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  11. Typke, R., Giannopoulos, P., Veltkamp, R.C., Wierking, F., Oostrum, R.: Using transportation distances for measuring melodic similarity. In: Proc. of the 4th Int. Conf. Music Inf. Retrieval, pp. 107–114 (2003)

    Google Scholar 

  12. Weber, G.: The Centroid is a Reference Point for the Symmetric Difference in d Dimensions. Tech. Rep. UoA-SE-2004-1, The University of Auckland (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klein, O., Veltkamp, R.C. (2005). Approximation Algorithms for Computing the Earth Mover’s Distance Under Transformations. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_101

Download citation

  • DOI: https://doi.org/10.1007/11602613_101

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30935-2

  • Online ISBN: 978-3-540-32426-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics