Abstract
We consider several questions about monotone AC-tree automata, a class of equational tree automata whose transition rules correspond to rules in Kuroda normal form of context-sensitive grammars. Whereas it has been proved that this class has a decision procedure to determine if, given a monotone AC-tree automaton, it accepts no terms, other important decidability or complexity results have not been well-investigated yet. In the paper, we prove that the membership problem for monotone AC-tree automata is PSPACE-complete. We then study the expressiveness of monotone AC-tree automata: precisely, we prove that the family of AC-regular tree languages is strictly subsumed in that of AC-monotone tree languages. The proof technique used in obtaining the above result yields the answers to two different questions, specifically that the family of monotone AC-tree languages is not closed under complementation, and that the inclusion problem for monotone AC-tree automata is undecidable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Armando, A., Basin, D., Bouallagui, M., Chevalier, Y., Compagna, L., Mödersheim, S., Rusinowitch, M., Turuani, M., Viganò, L., Vigneron, L.: The AVISS Security Protocol Analysis Tool. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 349–353. Springer, Heidelberg (2002)
Boneva, I., Talbot, J.-M.: Automata and Logics for Unranked and Unordered Trees. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 500–515. Springer, Heidelberg (2005)
Bouhoula, A., Jouannaud, J.P., Meseguer, J.: Specification and Proof in Membership Equational Logic. TCS 236, 35–132 (2000)
Colcombet, T.: Rewriting in the Partial Algebra of Typed Terms Modulo AC. In: Proc. of 4th INFINITY, Brno (Czech Republic). ENTCS, vol. 68(6). Elsevier, Amsterdam (2002)
Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2002), http://www.grappa.univ-lille3.fr/tata
Dershowitz, N., Treinen, R.: Problem #101. The RTA List of Open Problems, Available at, http://www.lsv.ens-cachan.fr/rtaloop/ .
Devienne, P., Talbot, J.-M., Tison, S.: Set-Based Analysis for Logic Programming and Tree Automata. In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 127–140. Springer, Heidelberg (1997)
Esparza, J.: Decidability and Complexity of Petri Net Problems – An Introduction. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428. Springer, Heidelberg (1998)
Esparza, J.: Decidability of Model-Checking for Infinite-State Concurrent Systems. Acta Informatica 34, 85–107 (1997)
Esparza, J.: Grammars as Processes. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 277–297. Springer, Heidelberg (2002)
Gallagher, J.P., Puebla, G.: Abstract Interpretation over Non-Deterministic Finite Tree Automata for Set-Based Analysis of Logic Programs. In: Krishnamurthi, S., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS, vol. 2257, pp. 243–261. Springer, Heidelberg (2002)
Genet, T., Klay, F.: Rewriting for Cryptographic Protocol Verification. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 271–290. Springer, Heidelberg (2000)
Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill, New York (1966)
Goubault-Larrecq, J., Verma, K.N.: Alternating Two-way AC-Tree Automata. Technical Report LSV-02-11, Laboratoire Spécification et Vérification (2002)
Hauschildt, D.: Semilinearity of the Reachability Set is Decidable for Petri Nets. Technical Report FBI-HH-B-146/90, Universität Hamburg (1990)
Hendrix, J., Ohsaki, H., Meseguer, J.: Sufficient Completeness Checking with Propositional Tree Automata. Technical Report AIST-PS-2005-013, National Institute of Advanced Industrial Science and Technology (2005), http://staff.aist.go.jp/hitoshi.ohsaki/
Hosoya, H., Vouillon, J., Pierce, B.C.: Regular Expression Types for XML. In: Proc. of 5th ICFP, Montreal (Canada). SIGPLAN Notices, vol. 35(9), pp. 11–22. ACM Press, New York (2000)
Jones, N.D., Landweber, L.H., Lien, Y.E.: Complexity of Some Problems in Petri Nets. TCS 4(3), 277–299 (1977)
Kudlek, M., Mitrana, V.: Normal Forms of Grammars, Finite Automata, Abstract Families, and Closure Properties of Multiset Languages. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 135–146. Springer, Heidelberg (2001)
Kuroda, S.Y.: Classes of Languages and Linear Bounded Automata. Information and Control 7(2), 207–223 (1964)
Lugiez, D.: Counting and Equality Corstraints for Multitree Automata. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 328–342. Springer, Heidelberg (2003)
Matiyasevich, Y.: Enumerable Sets are Diophantine. Doklady Akademii Nauk SSSR 191(2), 279–282 (1970) (in Russian); Improved and English translation in Soviet Mathematics Doklady, 11, 354–357
Ohsaki, H.: Beyond Regularity: Equational Tree Automata for Associative and Commutative Theories. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 539–553. Springer, Heidelberg (2001)
Ohsaki, H., Seki, H., Takai, T.: Recognizing Boolean Closed A-Tree Languages with Membership Conditional Rewriting Mechanism. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 483–498. Springer, Heidelberg (2003)
Ohsaki, H., Takai, T.: Decidability and Closure Properties of Equational Tree Languages. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 114–128. Springer, Heidelberg (2002)
Ohsaki, H., Takai, T.: ACTAS: A System Design for Associative and Commutative Tree Automata Theory. In: Proc. of 5th RULE, Aachen (Germany). ENTCS, vol. 124(1), pp. 97–111. Elsevier, Amsterdam (2005)
Parikh, R.J.: On Context-Free Languages. JACM 13(4), 570–581 (1966)
Savitch, W.: Relationships between Nondeterministic and Deterministic Tape Complexities. Journal of Computer and Systems Sciences 4(2), 177–192 (1970)
Seidl, H., Schwentick, T., Muscholl, A.: Numerical Document Queries. In: Proc. of 22nd PODS, San Diego (USA), pp. 155–166. ACM Press, New York (2003)
Verma, K.N.: On Closure under Complementation of Equational Tree Automata for Theories Extending AC. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 183–197. Springer, Heidelberg (2003)
Verma, K.N.: Two-Way Equational Tree Automata for AC-like Theories: Decidability and Closure Properties. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 180–197. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ohsaki, H., Talbot, JM., Tison, S., Roos, Y. (2005). Monotone AC-Tree Automata. In: Sutcliffe, G., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2005. Lecture Notes in Computer Science(), vol 3835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11591191_24
Download citation
DOI: https://doi.org/10.1007/11591191_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30553-8
Online ISBN: 978-3-540-31650-3
eBook Packages: Computer ScienceComputer Science (R0)