Monotone AC-Tree Automata | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3835))

Abstract

We consider several questions about monotone AC-tree automata, a class of equational tree automata whose transition rules correspond to rules in Kuroda normal form of context-sensitive grammars. Whereas it has been proved that this class has a decision procedure to determine if, given a monotone AC-tree automaton, it accepts no terms, other important decidability or complexity results have not been well-investigated yet. In the paper, we prove that the membership problem for monotone AC-tree automata is PSPACE-complete. We then study the expressiveness of monotone AC-tree automata: precisely, we prove that the family of AC-regular tree languages is strictly subsumed in that of AC-monotone tree languages. The proof technique used in obtaining the above result yields the answers to two different questions, specifically that the family of monotone AC-tree languages is not closed under complementation, and that the inclusion problem for monotone AC-tree automata is undecidable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armando, A., Basin, D., Bouallagui, M., Chevalier, Y., Compagna, L., Mödersheim, S., Rusinowitch, M., Turuani, M., Viganò, L., Vigneron, L.: The AVISS Security Protocol Analysis Tool. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 349–353. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Boneva, I., Talbot, J.-M.: Automata and Logics for Unranked and Unordered Trees. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 500–515. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Bouhoula, A., Jouannaud, J.P., Meseguer, J.: Specification and Proof in Membership Equational Logic. TCS 236, 35–132 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Colcombet, T.: Rewriting in the Partial Algebra of Typed Terms Modulo AC. In: Proc. of 4th INFINITY, Brno (Czech Republic). ENTCS, vol. 68(6). Elsevier, Amsterdam (2002)

    Google Scholar 

  5. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2002), http://www.grappa.univ-lille3.fr/tata

  6. Dershowitz, N., Treinen, R.: Problem #101. The RTA List of Open Problems, Available at, http://www.lsv.ens-cachan.fr/rtaloop/ .

  7. Devienne, P., Talbot, J.-M., Tison, S.: Set-Based Analysis for Logic Programming and Tree Automata. In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 127–140. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  8. Esparza, J.: Decidability and Complexity of Petri Net Problems – An Introduction. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428. Springer, Heidelberg (1998)

    Google Scholar 

  9. Esparza, J.: Decidability of Model-Checking for Infinite-State Concurrent Systems. Acta Informatica 34, 85–107 (1997)

    Article  MathSciNet  Google Scholar 

  10. Esparza, J.: Grammars as Processes. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 277–297. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Gallagher, J.P., Puebla, G.: Abstract Interpretation over Non-Deterministic Finite Tree Automata for Set-Based Analysis of Logic Programs. In: Krishnamurthi, S., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS, vol. 2257, pp. 243–261. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Genet, T., Klay, F.: Rewriting for Cryptographic Protocol Verification. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 271–290. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  14. Goubault-Larrecq, J., Verma, K.N.: Alternating Two-way AC-Tree Automata. Technical Report LSV-02-11, Laboratoire Spécification et Vérification (2002)

    Google Scholar 

  15. Hauschildt, D.: Semilinearity of the Reachability Set is Decidable for Petri Nets. Technical Report FBI-HH-B-146/90, Universität Hamburg (1990)

    Google Scholar 

  16. Hendrix, J., Ohsaki, H., Meseguer, J.: Sufficient Completeness Checking with Propositional Tree Automata. Technical Report AIST-PS-2005-013, National Institute of Advanced Industrial Science and Technology (2005), http://staff.aist.go.jp/hitoshi.ohsaki/

  17. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular Expression Types for XML. In: Proc. of 5th ICFP, Montreal (Canada). SIGPLAN Notices, vol. 35(9), pp. 11–22. ACM Press, New York (2000)

    Chapter  Google Scholar 

  18. Jones, N.D., Landweber, L.H., Lien, Y.E.: Complexity of Some Problems in Petri Nets. TCS 4(3), 277–299 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kudlek, M., Mitrana, V.: Normal Forms of Grammars, Finite Automata, Abstract Families, and Closure Properties of Multiset Languages. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 135–146. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Kuroda, S.Y.: Classes of Languages and Linear Bounded Automata. Information and Control 7(2), 207–223 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lugiez, D.: Counting and Equality Corstraints for Multitree Automata. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 328–342. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  22. Matiyasevich, Y.: Enumerable Sets are Diophantine. Doklady Akademii Nauk SSSR 191(2), 279–282 (1970) (in Russian); Improved and English translation in Soviet Mathematics Doklady, 11, 354–357

    Google Scholar 

  23. Ohsaki, H.: Beyond Regularity: Equational Tree Automata for Associative and Commutative Theories. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 539–553. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  24. Ohsaki, H., Seki, H., Takai, T.: Recognizing Boolean Closed A-Tree Languages with Membership Conditional Rewriting Mechanism. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 483–498. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Ohsaki, H., Takai, T.: Decidability and Closure Properties of Equational Tree Languages. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 114–128. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  26. Ohsaki, H., Takai, T.: ACTAS: A System Design for Associative and Commutative Tree Automata Theory. In: Proc. of 5th RULE, Aachen (Germany). ENTCS, vol. 124(1), pp. 97–111. Elsevier, Amsterdam (2005)

    Google Scholar 

  27. Parikh, R.J.: On Context-Free Languages. JACM 13(4), 570–581 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  28. Savitch, W.: Relationships between Nondeterministic and Deterministic Tape Complexities. Journal of Computer and Systems Sciences 4(2), 177–192 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  29. Seidl, H., Schwentick, T., Muscholl, A.: Numerical Document Queries. In: Proc. of 22nd PODS, San Diego (USA), pp. 155–166. ACM Press, New York (2003)

    Google Scholar 

  30. Verma, K.N.: On Closure under Complementation of Equational Tree Automata for Theories Extending AC. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 183–197. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  31. Verma, K.N.: Two-Way Equational Tree Automata for AC-like Theories: Decidability and Closure Properties. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 180–197. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohsaki, H., Talbot, JM., Tison, S., Roos, Y. (2005). Monotone AC-Tree Automata. In: Sutcliffe, G., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2005. Lecture Notes in Computer Science(), vol 3835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11591191_24

Download citation

  • DOI: https://doi.org/10.1007/11591191_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30553-8

  • Online ISBN: 978-3-540-31650-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics