Abstract
Logical algorithms are defined in terms of individual computation steps that are based on logical inferences. We present a uniform framework for formalizing logical algorithms based on inference systems. We present inference systems for algorithms such as resolution, the Davis–Putnam–Logemann–Loveland procedure, equivalence and congruence closure, and satisfiability modulo theories. The paper is intended as an introduction to the use of inference systems for studying logical algorithms.
This research was supported NSF Grants CCR-ITR-0326540 and CCR-ITR-0325808.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bledsoe, W.W.: Non-resolution theorem proving. Artificial Intelligence 9, 1–36 (1977)
Boyer, R.S., Moore, J.S.: A Computational Logic. Academic Press, New York (1979)
Bachmair, L., Tiwari, A., Vigneron, L.: Abstract congruence closure. Journal of Automated Reasoning 31(2), 129–168 (2003)
Buchberger, B.: A theoretical basis for the reduction of polynomials to canonical forms. ACM SIGSAM Bulletin 10(3), 19–29 (1976)
Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F., Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T., Smith, S.F.: Implementing Mathematics with the Nuprl Proof Development System. Prentice Hall, Englewood Cliffs (1986)
Cohen, J.: A view of the origins and development of prolog. Communications of the ACM 31(1), 26–36 (1988)
Davis, M.: A computer program for Presburger’s algorithm. In: Summaries of Talks Presented at the Summer Institute for Symbolic Logic (1957); Reprinted in Siekmann and Wrightson [SW83], pp. 41–48
de Bruijn, N.G.: A survey of the project Automath. In: To, H.B. (ed.) Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 589–606. Academic Press, London (1980)
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5(7), 394–397 (1983); Reprinted in Siekmann and Wrightson [SW83], pp. 267–270 (1983)
de Moura, L., Rueß, H., Shankar, N.: Justifying equality. In: Proceedings of PDPAR 2004 (2004)
Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 201–215 (1960)
Davis, M., Putnam, H.: A computing procedure for quantification theory. JACM 7(3), 201–215 (1960)
Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpressions problem. Journal of the ACM 27(4), 758–771 (1980)
Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment for Higher-Order Logic. Cambridge University Press, Cambridge (1993)
Gordon, M., Milner, R., Wadsworth, C.: Edinburgh LCF: A Mechanized Logic of Computation. In: Gordon, M., Wadsworth, C.P., Milner, R. (eds.) Edinburgh LCF. LNCS, vol. 78, Springer, Heidelberg (1979)
Ganzinger, H., Rueß, H., Shankar, N.: Modularity and refinement in inference systems. Technical Report CSL-SRI-04-02, SRI International, Computer Science Laboratory, 333 Ravenswood Ave, Menlo Park, CA, 94025 (January 2004), (revised August 2004)
Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)
Kapur, D.: hostak’s congruence closure as completion. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 23–37. Springer, Heidelberg (1997)
Knuth, D.E., Bendix, P.: imple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebras, pp. 263–297. Pergamon Press, Oxford (1970)
Kleene, S.C.: Introduction to Metamathematics. North-Holland, Amsterdam (1952)
Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach. In: Advances in Formal Methods., vol. 3, Kluwer, Dordrecht (2000)
Kozen, D.: Complexity of finitely presented algebras. In: Conference Record of the Ninth Annual ACM Symposium on Theory of Computing, Boulder, Colorado, May 2–4, pp. 164–177 (1977)
Luo, Z., Pollack, R.: The LEGO proof development system: A user’s manual. Technical Report ECS-LFCS-92-211, University of Edinburgh (1992)
McCarthy, J.: Computer programs for checking mathematical proofs. In Recursive Function Theory. In: Proceedings of a Symposium in Pure Mathematics, vol. V, pp. 219–227. American Mathematical Society, Providence (1962)
McCune, W.W.: Solution of the Robbins problem, Available from ftp://info.mcs.anl.gov/pub/Otter/www-misc/robbins-jar-submitted.ps.gz (1997)
Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Transactions on Programming Languages and Systems 1(2), 245–257 (1979)
Nieuwenhuis, R., Oliveras, A.: Proof-Producing Congruence Closure. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 453–468. Springer, Heidelberg (2005)
Newell, A., Shaw, J.C., Simon, H.A.: Empirical explorations with the logic theory machine: A case study in heuristics. In: Proc. West. Joint Comp. Conf., pp. 218–239 (1957), Reprinted in Siekmann and Wrightson [SW83], pp. 49–73 (1983)
Paulson, L.C.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer, Heidelberg (1994)
Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12(1), 23–41 (1965)
Robinson, J.A.: Automatic deduction with hyper-resolution. International Journal of Computational Mathematics 1, 227–234 (1965)
Robinson, A., Voronkov, A. (eds.): Handbook of Automated Reasoning. Elsevier Science, Amsterdam (2001)
Shostak, R.E.: An algorithm for reasoning about equality. Communications of the ACM 21(7), 583–585 (1978)
Shostak, R.E.: A practical decision procedure for arithmetic with function symbols. Journal of the ACM 26(2), 351–360 (1979)
Shostak, R.E.: Deciding combinations of theories. Journal of the ACM 31(1), 1–12 (1984)
Sutcliffe, G., Suttner, C.B.: The TPTP Problem Library: CNF Release v1.2.1. Journal of Automated Reasoning 21(2), 177–203 (1998)
Siekmann, J., Wrightson, G. (eds.): Automation of Reasoning: Classical Papers on Computational Logic. Springer, Heidelberg (1983)
Coq Development Team. The Coq proof assistant reference manual, version 8.0. Technical report, INRIA, Rocquencourt, France (January 2005)
Wos, L., Robinson, G.A., Carson, D.: Efficiency and completeness of the set of support strategy in theorem proving. Journal of the ACM 12(4), 536–541 (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shankar, N. (2005). Inference Systems for Logical Algorithms. In: Sarukkai, S., Sen, S. (eds) FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2005. Lecture Notes in Computer Science, vol 3821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11590156_4
Download citation
DOI: https://doi.org/10.1007/11590156_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30495-1
Online ISBN: 978-3-540-32419-5
eBook Packages: Computer ScienceComputer Science (R0)