Measuring Arrangement Similarity Between Thematic Raster Databases Using a QuadTree-Based Approach | SpringerLink
Skip to main content

Measuring Arrangement Similarity Between Thematic Raster Databases Using a QuadTree-Based Approach

  • Conference paper
GeoSpatial Semantics (GeoS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3799))

Included in the following conference series:

Abstract

Measuring the degree of similarity between thematic raster databases is a common task widely used in remote sensing accuracy assessment, spatial model validation, and many other geospatial tasks. However, conventional similarity measures look only at point-to-point similarity; they are not designed to evaluate the similarity of shapes and arrangements of features within the databases being compared. This study proposes a technique of assessing arrangement similarity based on a comparison of quadtree representations of the maps being evaluated. Empirical assessment shows that the technique produces results that agree strongly with subjective evaluations of the similarity of artificial raster databases produced by a survey of map users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jensen, J.R.: Introductory Digital Image Processing. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  2. Seaborn, M., Hepplewhite, L., Stonham, J.: Fuzzy Colour Category Map for the Measurement of Colour Similarity and Dissimilarity. Pattern Recognition 38(2), 165–177 (2005)

    Article  MATH  Google Scholar 

  3. Tse, P.U.: Complete Mergeability and Amodal Completion. Acta Psychologica 102(2-3), 165–201 (1999)

    Article  Google Scholar 

  4. Lohse, G., Walker, N., Biolsi, K., Rueter, H.: Classifying Graphical Information. Behaviour & Information Technology 10(5), 419–436 (1991)

    Article  Google Scholar 

  5. Halpern, D.F., Fishbein, H.D., Warm, J.S.: Similarity Judgments of Patterns and Maps. Bulletin of the Psychonomic Society 13(1), 23–26 (1979)

    Google Scholar 

  6. Liu, Z.L., Jacobs, D.W., Basri, R.: The Role of Convexity in Perceptual Completion: Beyond Good Continuation. Vision Research 39(25), 4244–4257 (1999)

    Article  Google Scholar 

  7. Pontius, G., Malanson, J.: Comparison of the Structure and Accuracy of Two Land Change Models. Int. J. of Geographical Information Science 19(2), 243–265 (2005)

    Article  Google Scholar 

  8. Pontius, R.G., Huffaker, D., Denman, K.: Useful Techniques of Validation for Spatially Explicit Land-Change Models. Ecological Modelling 179(4), 445–461 (2004)

    Article  Google Scholar 

  9. Fewster, R.M., Buckland, S.T.: Similarity Indices for Spatial Ecological Data. Biometrics 57(2), 495–501 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Patil, G.P., Taillie, C.: Multiscale Frequency Table Analysis of Landscape Fragmentation in Thematic Raster Maps. Sankhya: The Indian Journal of Statistics 64(A2), 344–363 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)

    Article  Google Scholar 

  12. Carstensen, L.W.: A Measure of Similarity for Cellular Maps. American Cartographer 14(4), 345–357 (1987)

    Article  Google Scholar 

  13. Hagen, A.: Fuzzy Set Approach to Assessing Similarity of Categorical Maps. Int. J. of Geographical Information Science 17(3), 235–249 (2003)

    Article  Google Scholar 

  14. Power, C., Simms, A., White, R.: Hierarchical Fuzzy Pattern Matching for the Regional Comparison of Land Use Maps. Int. J. of Geographical Information Science 15(1), 77–100 (2001)

    Article  Google Scholar 

  15. Townsend, P.A.: A Quantitative Fuzzy Approach to Assess Mapped Vegetation Classifications for Ecological Applications. Remote Sensing of Environment 72(3), 253–267 (2000)

    Article  Google Scholar 

  16. Carmel, Y., Dean, D.J., Flather, C.H.: Combining Location and Classification Error Sources for Estimating Multi-Temporal Database Accuracy. Photogrammetric Engineering and Remote Sensing 67(7), 865–872 (2001)

    Google Scholar 

  17. Carmel, Y., Dean, D.J.: Performance of a Spatio-Temporal Error Model for Raster Datasets Under Complex Error Patterns. Int. J. of Remote Sensing 25(23), 5283–5296 (2004)

    Article  Google Scholar 

  18. Saupe, D. Algorithms for Random Fractals. In: Peitgen, H-O., Saupe, D. (eds.): The Science of Fractal Images. Springer-Verlag, Berlin Heidelberg New York, pp. 71 – 113, 1988.

    Google Scholar 

  19. Burrough, P.A., McDonnell, R.A. Principles of Geographical Information Systems. Oxford University Press, Oxford, England, 1998.

    Google Scholar 

  20. Samet, H. Applications of Spatial Data Structures. Addison-Wesley, Reading, Massachusetts, 1990.

    Google Scholar 

  21. Samet, H. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, Massachusetts, 1990.

    Google Scholar 

  22. Ross, R.T. Optimum Orders for the Presentation of Pairs in the Method of Paired Comparisons. J. of Educational Psychology, 25 (4): 370 – 382, 1934.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dean, D.J. (2005). Measuring Arrangement Similarity Between Thematic Raster Databases Using a QuadTree-Based Approach. In: Rodríguez, M.A., Cruz, I., Levashkin, S., Egenhofer, M.J. (eds) GeoSpatial Semantics. GeoS 2005. Lecture Notes in Computer Science, vol 3799. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11586180_9

Download citation

  • DOI: https://doi.org/10.1007/11586180_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30288-9

  • Online ISBN: 978-3-540-32283-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics