Using Semantic Similarity Metrics to Uncover Category and Land Cover Change | SpringerLink
Skip to main content

Using Semantic Similarity Metrics to Uncover Category and Land Cover Change

  • Conference paper
GeoSpatial Semantics (GeoS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3799))

Included in the following conference series:

Abstract

Analysis of geographic data that uses a nominal measurement framework is problematic since it limits the possible analytic methods that can be applied. Land cover change analysis is an example of this where both the actual change analysis as well as classification changes over time can be problematic. This study illustrates the use of semantic similarity metrics on parameterized category definitions, and how these metrics can be used to assess land cover change over time as a degree of perceived change with respect to the original landscape state. It also illustrates how changes of the categories, the classification system, over time can be analyzed using semantic similarity measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahlqvist, O.: A parameterized representation of uncertain conceptual spaces. Transactions in GIS 8(4), 493–514 (2004)

    Article  Google Scholar 

  2. Ahlqvist, O.: Using uncertain conceptual spaces to translate between land cover categories. International journal of geographical information science 19(7), 831–857 (2005)

    Article  Google Scholar 

  3. Ahlqvist, O., Gahegan, M.: Photogrammetric Engineering and Remote Sensing. Probing the relationship between classification error and class similarity (in press)

    Google Scholar 

  4. Ahlqvist, O., Keukelaar, J., Oukbir, K.: Rough and fuzzy geographical data integration. International journal of geographic information science 17(3), 223–234 (2003)

    Article  Google Scholar 

  5. Bishr, Y.: Overcoming the semantic and other barriers to GIS interoperability. International Journal of Geographic Information Science 12(4), 299–314 (1998)

    Article  Google Scholar 

  6. Bouchon-Meunier, B., Rifqi, M., Bothorel, S.: Towards general measures of comparison of objects. Fuzzy Sets and Systems 84, 143–153 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Comber, A., Fisher, P., Wadsworth, R.: Assessment of a semantic statistical approach to detecting land cover change using inconsistent data sets. Photogrammetric Engineering and Remote Sensing 70, 931–938 (2004)

    Google Scholar 

  8. Di Gregorio, A., Jansen, L.J.M.: Land Cover Classification System: Classification Concepts And User Manual. FAO, Rome (1998)

    Google Scholar 

  9. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. General Systems 17, 191–209 (1990)

    Article  MATH  Google Scholar 

  10. Fonseca, F.T., Egenhofer, M.J., Agouris, P., Câmara, G.: Using ontologies for integrated geographic information systems. Transactions in GIS 6(3), 231–257 (2002)

    Article  Google Scholar 

  11. Gärdenfors, P.: Conceptual spaces: the geometry of thought, 307 pp. MIT Press, Cambridge (2000)

    Google Scholar 

  12. Hahn, U., Chater, N.: Concepts and Similarity. In: Lamberts, K., Shanks, D. (eds.) Knowledge, Concepts and Categories, pp. 43–92. Psychology Press, East Sussex (1997)

    Google Scholar 

  13. Jones, C.B., Alani, H., Tudhope, D.: Geographical Terminology Servers – Closing the Semantic Divide. In: Duckham, et al. (eds.) Foundations of geographic information science, vol. 257, pp. 205–222. Taylor & Francis, London (2003)

    Google Scholar 

  14. Kaufman, A., Gupta, M.M.: Introduction to fuzzy arithmetic, 351 pp. Van Nostrand Reinhold Company, New York (1985)

    Google Scholar 

  15. Livingstone, D., Raper, J.: Modelling environmental systems with GIS: theoretical barriers to progress. In: Worboys, M.F. (ed.) Innovations in GIS 1, pp. 229–240. Taylor & Francis, London (1994)

    Google Scholar 

  16. Mennis, J.L.: Derivation and implementation of a semantic GIS data model informed by principles of cognition. Computers, Environment and Urban Sytems 27, 455–479 (2003)

    Article  Google Scholar 

  17. Nosofsky, R.M.: Attention, similarity,and the identification-categorization relationship. Journal of Experimental Psychology: General 115, 39–57 (1986)

    Article  Google Scholar 

  18. Nyerges, T.L.: Geographic information abstractions: conceptual clarity for geographical modeling. Environment and Planning A 23, 1483–1499 (1991)

    Article  Google Scholar 

  19. Openshaw, S.: Commentary: Fuzzy logic as a new scientific paradigm for doing geography. Environment and Planning A 28, 761–768 (1999)

    Google Scholar 

  20. Power, et al.: Describe a hierarchical fuzzy pattern matching based on ad hoc rules for combinations of crisp landcover classes (2001)

    Google Scholar 

  21. Rodríguez, M.A., Egenhofer, M.J.: Comparing geospatial entity classes: an asymmetric and context-dependent similarity measure. International Journal of Geographical Information Science 18, 229–256 (2004)

    Article  Google Scholar 

  22. Saaty, T.L.: The analytic hierarchy process: planning, priority setting, resource allocation. RWS Publications, Pittsburgh (1990)

    Google Scholar 

  23. Tversky, A.: Features of similarity. Psychological review 84, 327–352 (1977)

    Article  Google Scholar 

  24. Usery, E.L.: A conceptual framework and fuzzy set implementation for geographic features. In: Burrough, P.A., Frank, A.U. (eds.) Geographic, Objects, With Indeterminate Boundaries, vol. 345, pp. 71–85. Taylor & Francis, London (1996)

    Google Scholar 

  25. Visser, U., Stuckenschmidt, H., Schuster, G., Vogele, T.: Ontologies for geographic information processing. Computers and Geosciences 28(1), 103–117 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahlqvist, O. (2005). Using Semantic Similarity Metrics to Uncover Category and Land Cover Change. In: Rodríguez, M.A., Cruz, I., Levashkin, S., Egenhofer, M.J. (eds) GeoSpatial Semantics. GeoS 2005. Lecture Notes in Computer Science, vol 3799. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11586180_8

Download citation

  • DOI: https://doi.org/10.1007/11586180_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30288-9

  • Online ISBN: 978-3-540-32283-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics