Measuring Semantic Similarity Between Geospatial Conceptual Regions | SpringerLink
Skip to main content

Measuring Semantic Similarity Between Geospatial Conceptual Regions

  • Conference paper
GeoSpatial Semantics (GeoS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3799))

Included in the following conference series:

  • 831 Accesses

Abstract

Determining the grade of semantic similarity between geospatial concepts is the basis for evaluating semantic interoperability of geographic information services and their users. Geometrical models, such as conceptual spaces, offer one way of representing geospatial concepts, which are modelled as n-dimensional regions. Previous approaches have suggested to measure semantic similarity between concepts based on their approximation by single points. This paper presents a way to measure semantic similarity between conceptual regions—leading to more accurate results. In addition, it allows for asymmetries by measuring directed similarities. Examples from the geospatial domain illustrate the similarity measure and demonstrate its plausibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought, 317 pp. MIT Press, Cambridge (2000)

    Google Scholar 

  2. Lakoff, G.: Cognitive Semantics. In: Eco, U., Santambrogio, M., Violi, P. (eds.) Meaning and Mental Representations (Advances in Semiotics), pp. 119–154. Indiana University Press, Bloomington (1988)

    Google Scholar 

  3. Barsalou, L.: Situated simulation in the human conceptual system. Language and Cognitive Processes 5(6), 513–562 (2003)

    Article  Google Scholar 

  4. Gärdenfors, P.: Representing actions and functional properties in conceptual spaces. In: Ziemke, T., Zlatev, J. (eds.) Body, Language and Mind (2004) (to appear)

    Google Scholar 

  5. Raubal, M.: Formalizing Conceptual Spaces. In: Varzi, A., Vieu, L. (eds.) Formal Ontology in Information Systems, Proceedings of the Third International Conference (FOIS 2004), pp. 153–164. IOS Press, Amsterdam (2004)

    Google Scholar 

  6. Devore, J., Peck, R.: Statistics - The Exploration and Analysis of Data. In: Pacific Grove, 4th edn., 713 pp. Pacific Grove, CA (2001)

    Google Scholar 

  7. Jones, W.P., Furnas, G.W.: Pictures of Relevance: A Geometric Analysis of Similarity Measures. Journal of American Society for Information Science 38(6), 420–442 (1987)

    Article  Google Scholar 

  8. Suppes, P., et al.: Foundations of Measurement. In: Geometrical, Threshold, and Probabilistic Representations, vol. 2, p. 493. Academic Press, Inc., San Diego (1989)

    Google Scholar 

  9. Attneave, F.: Dimensions of Similarity. American Journal of Psychology 63, 516–556 (1950)

    Article  Google Scholar 

  10. Melara, R.D., Marks, L.E., Lesko, K.E.: Optional processes in similarity judgments. Perception & Psychophysics 51(2), 123–133 (1992)

    Article  Google Scholar 

  11. Johannesson, M.: Combining Integral and Separable Subspaces. In: Twenty-Third Annual Conference of the Cognitive Science Society. Lawrence Erlbaum, Mahwah (2001)

    Google Scholar 

  12. Johannesson, M.: The Problem of Combining Integral and Separable Dimensions, 16 pp. Lund University Cognitive Studies, Lund (2002)

    Google Scholar 

  13. Johannesson, M.: Geometric Models of Similarity. Lund University Cognitive Studies, vol. 90, 171 pp. Lund University, Lund (2002)

    Google Scholar 

  14. Pike, W., Gahegan, M.: Constructing Semantically Scalable Cognitve Spaces. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 332–348. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Tversky, A., Sattath, S.: Additive Similaritiy Trees. Psychometrika 42(3), 319–345 (1977)

    Article  Google Scholar 

  16. Rodríguez, A., Egenhofer, M.: Determining Semantic Similarity Among Entity Classes from Different Ontologies. IEEE Transactions on Knowledge and Data Engineering 15(2), 442–456 (2003)

    Article  Google Scholar 

  17. Rodríguez, A., Egenhofer, M.J.: Comparing Geospatial Entity Classes: An Asymmetric and Context-Dependent Similarity Measure. International Journal of Geographical Information Science 18(3), 229–256 (2004)

    Article  Google Scholar 

  18. Rada, R., et al.: Development and application of a metric on semantic nets. IEEE Transactions on systems, man, and cybernetics 19(1), 17–30 (1989)

    Article  Google Scholar 

  19. Hahn, U., Chater, N., Richardson, L.B.: Similarity as transformation. Cognition 87, 1–32 (2003)

    Article  MATH  Google Scholar 

  20. Rosch, E.: Principles of Categorization. In: Rosch, E., Lloyd, B. (eds.) Cognition and Categorization, pp. 27–48. Lawrence Erlbaum Associates, Hillsdale (1978)

    Google Scholar 

  21. Goldstone, R.L., Kersten, A.: Concepts and Categorization. In: Healy, A.F., Proctor, R.W. (eds.) Comprehensive Handbook of Psychology, pp. 599–621. Wiley, New Jersey (2003)

    Google Scholar 

  22. Tversky, A.: Features of Similarity. Psychological Review 84(4), 327–352 (1977)

    Article  Google Scholar 

  23. Tversky, A., Gati, I.: Studies of Similarity. In: Rosch, E., Lloyd, B. (eds.) Cognition and Categorization, pp. 79–98. Lawrence Erlbaum, Hillsdale (1978)

    Google Scholar 

  24. Tversky, A., Gati, I.: Similarity, Separability, and the Triangle Inequality. Psychological Review 89(2), 123–154 (1982)

    Article  Google Scholar 

  25. Johannesson, M.: Modelling Asymmetric Similarity with Prominence. British Journal of Mathematical and Statistical Psychology 53, 121–139 (2000)

    Article  Google Scholar 

  26. Krumhansl, C.L.: Concerning the Applicability of Geometric Models to Similarity Data: The Interrelationship Between Similarity and Spatial Density. Psychological Review 85(5), 445–463 (1978)

    Article  Google Scholar 

  27. Rodríguez, A., Egenhofer, M., Rugg, R.D.: Assessing Semantic Similarities Among Geospatial Feature Class Definitions. In: Včkovski, A., Brassel, K.E., Schek, H.-J. (eds.) INTEROP 1999. LNCS, vol. 1580, pp. 189–202. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  28. Rodríguez, A.: Assessing Semantic Similarity Among Spatial Entity Classes, in Spatial Information Science and Engineering. PhD Thesis. University of Maine: Maine, 168 pp. (2000)

    Google Scholar 

  29. Egenhofer, M., Franzosa, R.: Point-set topological spatial relations. International Journal of Geographical Information Systems 5(2), 161–174 (1991)

    Article  Google Scholar 

  30. Egenhofer, M.J.: A Formal Definition of Binary Topological Relationships. In: Litwin, W., Schek, H. (eds.) Third International Conference on Foundations of Data Organization and Algorithms (FODO), pp. 457–472. Springer, Paris (1998)

    Google Scholar 

  31. Goodman, J.E., O’Rourke, J.: Handbook of Discrete and Computational Geometry. In: Discrete Mathematics and Its Applications, 1st edn. CRC Press, Boca Raton (1997)

    Google Scholar 

  32. de Berg, M., et al.: Computational Geometry - Algorithms and Applications, vol. 1, 365 pp. Springer, Berlin (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwering, A., Raubal, M. (2005). Measuring Semantic Similarity Between Geospatial Conceptual Regions. In: Rodríguez, M.A., Cruz, I., Levashkin, S., Egenhofer, M.J. (eds) GeoSpatial Semantics. GeoS 2005. Lecture Notes in Computer Science, vol 3799. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11586180_7

Download citation

  • DOI: https://doi.org/10.1007/11586180_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30288-9

  • Online ISBN: 978-3-540-32283-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics