Abstract
Estimation of parameters of random field models from labeled training data is crucial for their good performance in many image analysis applications. In this paper, we present an approach for approximate maximum likelihood parameter learning in discriminative field models, which is based on approximating true expectations with simple piecewise constant functions constructed using inference techniques. Gradient ascent with these updates exhibits compelling limit cycle behavior which is tied closely to the number of errors made during inference. The performance of various approximations was evaluated with different inference techniques showing that the learned parameters lead to good classification performance so long as the method used for approximating the gradient is consistent with the inference mechanism. The proposed approach is general enough to be used for the training of, e.g., smoothing parameters of conventional Markov Random Fields (MRFs).
Preview
Unable to display preview. Download preview PDF.
References
Kumar, S., Hebert, M.: Discriminative fields for modeling spatial dependencies in natural images. In: Adv. in Neural Information Processing Systems, NIPS (2004)
Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. Int. Conf. on Machine Learning (2001)
Sha, F., Pereira, F.: Shallow parsing with conditional random fields. In: Proc. Human Language Technology-NAACL (2003)
Kumar, S., Hebert, M.: Multiclass discriminative fields for parts-based object detection. In: Snowbird Learning Workshop, Utah (2004)
Hinton, G.E.: Training product of experts by minimizing contrastive divergence. Neural Computation 14, 1771–1800 (2002)
Tu, Z.W., Zhu, S.C.: Image segmentation by data-driven markov chain monte carlo. IEEE Trans on Pattern Analysis and Machine Intelligence 24(5), 657–673 (2002)
Williams, C.K.I., Agakov, F.V.: An Analysis of Contrastive Divergence Learning in Gaussian Boltzmann Machines. EDI-INF-RR-0120, Informatics Research Report (May 2002)
Wainwright, M.J., Jaakkola, T., Willsky, A.S.: Tree-reweighted belief propagation and approximate ml estimation by pseudo-moment matching. In: 9th Workshop on AI Stat (2003)
McCallum, A., Rohanimanesh, K., Sutton, C.: Dynamic conditional random fields for jointly labeling multiple sequences. In: NIPS 2003 workshop on Syntax, Semantics and Statistic (2003)
Yedidia, J.S., Freeman, W.T., Weiss, Y.: Generalized belief propagation. Advances Neural Information Processing Systems 13, 689–695 (2001)
Geiger, D., Girosi, F.: Parallel and deterministic algorithms from mrf’s: Surface reconstruction. IEEE Trans PAMI 5(5), 401–412 (1991)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. of the IEEE 86(11), 2278–2324 (1998)
Collins, M.: Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. In: Proc. EMNLP (2002)
Freund, Y., Schapire, R.: Large margin classification using the perceptron algorithm. Machine Learning 37(3), 277–296 (1999)
Besag, J.: On the statistical analysis of dirty pictures. Journal of Royal Statistical Soc. B-48, 259–302 (1986)
Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary images. Journal of Royal Statis. Soc. 51(2), 271–279 (1989)
Murphy, K., Torralba, A., Freeman, W.T.: Using the forest to see the trees:a graphical model relating features, objects and scenes. In: Advances in Neural Information Processing Systems, NIPS 2003 (2003)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley, New York (2001)
Taskar, B., Guestrin, C., Koller, D.: Max-margin markov network. In: Neural Information Processing Systems Conference, NIPS 2003 (2003)
LeCun, Y., Huang, F.J.: Loss functions for discriminative training of energy-based models. AI-Stats (2005)
Qi, Y., Szummer, M., Minka, T.P.: Bayesian conditional random fields. AI & Statistics (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kumar, S., August, J., Hebert, M. (2005). Exploiting Inference for Approximate Parameter Learning in Discriminative Fields: An Empirical Study. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_11
Download citation
DOI: https://doi.org/10.1007/11585978_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30287-2
Online ISBN: 978-3-540-32098-2
eBook Packages: Computer ScienceComputer Science (R0)