Scalable Instance Retrieval for the Semantic Web by Approximation | SpringerLink
Skip to main content

Scalable Instance Retrieval for the Semantic Web by Approximation

  • Conference paper
Web Information Systems Engineering – WISE 2005 Workshops (WISE 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3807))

Included in the following conference series:

Abstract

Approximation has been identified as a potential way of reducing the complexity of logical reasoning. Here we explore approximation for speeding up instance retrieval in a Semantic Web context. For OWL ontologies, i.e., Description Logic (DL) Knowledge Bases, it is known that reasoning is a hard problem. Especially in instance retrieval when the number of instances that need to be retrieved becomes very large. We discuss two approximation methods for retrieving instances to conjunctive queries over DL T-Boxes and the results of experiments carried out with a modified version of the Instance Store System.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook - Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Groot, P., Stuckenschmidt, H., Wache, H.: Approximating Description Logic Classification for Semantic Web Reasoning. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005, vol. 3532, pp. 318–332. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Haarslev, V., Möller, R.: RACE system description. In: Proceedings of the 1999 DL Workshop, CEUR Electronic Workshop Proceedings, pp. 130–132 (1999)

    Google Scholar 

  4. Haarslev, V., Möller, R.: High performance reasoning with very large knowledge bases: A practical case study. In: IJCAI 2001, pp. 161–168 (2001)

    Google Scholar 

  5. Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 701–705. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Horrocks, I.: The FACT system. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS, vol. 1397, pp. 307–312. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Horrocks, I.: Using an Expressive Description Logic: FaCT or Fiction? In: KR 1998, pp. 636–647. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  8. Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The Instance Store: DL Reasoning with Large Numbers of Individuals. In: Proc. of the 2004 DL Workshop (2004)

    Google Scholar 

  9. Horrocks, I., Tessaris, S.: A Conjunctive Query Language for Description Logic Aboxes. In: AAAI, pp. 399–404 (2000)

    Google Scholar 

  10. Schaerf, M., Cadoli, M.: Tractable reasoning via approximation. Artificial Intelligence 74, 249–310 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Stuckenschmidt, H., van Harmelen, F.: Approximating terminological queries. In: Andreasen, T., Motro, A., Christiansen, H., Larsen, H.L. (eds.) FQAS 2002. LNCS, vol. 2522, pp. 329–343. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wache, H., Groot, P., Stuckenschmidt, H. (2005). Scalable Instance Retrieval for the Semantic Web by Approximation. In: Dean, M., et al. Web Information Systems Engineering – WISE 2005 Workshops. WISE 2005. Lecture Notes in Computer Science, vol 3807. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11581116_26

Download citation

  • DOI: https://doi.org/10.1007/11581116_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30018-2

  • Online ISBN: 978-3-540-32287-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics