Abstract
The paper presents a modified version of principal component analysis of 3-channel Holter recordings that enables to construct one SVM linear classifier for the selected group of patients with arrhythmias. Our classifier has perfect generalization properties. We studied the discrimination of premature ventricular excitation from normal ones. The high score of correct classification (95%) is due to the orientation of the system of coordinates along the largest eigenvector of the normal heart action of every patient under study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Endo, T., Yamaki, M., Ikeda, H., Kubota, I., Tomoike, H.: Relation of principal components of ECG maps to loci of wall abnormality in old myocardial infarction. Am. J. Physiol (Heart Circ. Physiol. 35) 266, 1604–1609 (1994)
Cover, T.M.: Geometrical and Statistical Properties of Systems of Linear Inequalities with Application in Pattern Recognition. IEEE Transaction on Electronic Computers, 326–334 (June 1965)
Dubois, R.: Application des nouvelles méthodes d’apprentissage à la détection précoce d’anomalies en électrocardiographie, Ph.D. thesis, Université Paris 6 (2003)
Cao, L.J., Chua, K.S., Chong, W.K., Lee, H.P., Gu, Q.M.: A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing 55, 321–336 (2003)
Jankowski, S., Tijink, J., Vumbaca, G., Balsi, M., Karpiński, G.: Morphological analysis of ECG Holter recordings by support vector machines. In: Colosimo, A., Giuliani, A., Sirabella, P. (eds.) ISMDA 2002. LNCS, vol. 2526, pp. 134–143. Springer, Heidelberg (2002)
Jankowski, S., Orȩziak, A., Skorupski, A., Kowalski, H., Szymański, Z., Piątkowska- Janko, E.: Computer-aided Morphological Analysis of Holter ECG Recordings Based on Support Vector Learning System. In: Proc. IEEE International Conference Computers in Cardiology, Tessaloniki, pp. 597–600 (2003)
Oxford Medilog Holter Management Systems, http://www.scanmed.co.uk/oxford.htm
Jankowski, S., Dusza, J.J., Wierzbowski, M., Orȩziak, A.: PCA representation as a useful tool for detection of premature ventricular beats in 3-channel Holter recording by neural network and support vector machine classifier. In: Barreiro, J.M., Martín-Sánchez, F., Maojo, V., Sanz, F. (eds.) ISBMDA 2004. LNCS, vol. 3337, pp. 259–268. Springer, Heidelberg (2004)
Wagner, G.S.: Marriot’s Practical Electrocardiography. Williams & Wilkins, Baltimore (1994)
Vapnik, N.V.: Statistical Learning Theory. John Wiley & Sons Inc., New York (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jankowski, S., Dusza, J.J., Wierzbowski, M., Oręziak, A. (2005). SVM Detection of Premature Ectopic Excitations Based on Modified PCA. In: Oliveira, J.L., Maojo, V., Martín-Sánchez, F., Pereira, A.S. (eds) Biological and Medical Data Analysis. ISBMDA 2005. Lecture Notes in Computer Science(), vol 3745. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11573067_18
Download citation
DOI: https://doi.org/10.1007/11573067_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29674-4
Online ISBN: 978-3-540-31658-9
eBook Packages: Computer ScienceComputer Science (R0)