SVM Detection of Premature Ectopic Excitations Based on Modified PCA | SpringerLink
Skip to main content

SVM Detection of Premature Ectopic Excitations Based on Modified PCA

  • Conference paper
Biological and Medical Data Analysis (ISBMDA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3745))

Included in the following conference series:

Abstract

The paper presents a modified version of principal component analysis of 3-channel Holter recordings that enables to construct one SVM linear classifier for the selected group of patients with arrhythmias. Our classifier has perfect generalization properties. We studied the discrimination of premature ventricular excitation from normal ones. The high score of correct classification (95%) is due to the orientation of the system of coordinates along the largest eigenvector of the normal heart action of every patient under study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Endo, T., Yamaki, M., Ikeda, H., Kubota, I., Tomoike, H.: Relation of principal components of ECG maps to loci of wall abnormality in old myocardial infarction. Am. J. Physiol (Heart Circ. Physiol. 35) 266, 1604–1609 (1994)

    Google Scholar 

  2. Cover, T.M.: Geometrical and Statistical Properties of Systems of Linear Inequalities with Application in Pattern Recognition. IEEE Transaction on Electronic Computers, 326–334 (June 1965)

    Google Scholar 

  3. Dubois, R.: Application des nouvelles méthodes d’apprentissage à la détection précoce d’anomalies en électrocardiographie, Ph.D. thesis, Université Paris 6 (2003)

    Google Scholar 

  4. Cao, L.J., Chua, K.S., Chong, W.K., Lee, H.P., Gu, Q.M.: A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing 55, 321–336 (2003)

    Article  Google Scholar 

  5. Jankowski, S., Tijink, J., Vumbaca, G., Balsi, M., Karpiński, G.: Morphological analysis of ECG Holter recordings by support vector machines. In: Colosimo, A., Giuliani, A., Sirabella, P. (eds.) ISMDA 2002. LNCS, vol. 2526, pp. 134–143. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Jankowski, S., Orȩziak, A., Skorupski, A., Kowalski, H., Szymański, Z., Piątkowska- Janko, E.: Computer-aided Morphological Analysis of Holter ECG Recordings Based on Support Vector Learning System. In: Proc. IEEE International Conference Computers in Cardiology, Tessaloniki, pp. 597–600 (2003)

    Google Scholar 

  7. Oxford Medilog Holter Management Systems, http://www.scanmed.co.uk/oxford.htm

  8. Jankowski, S., Dusza, J.J., Wierzbowski, M., Orȩziak, A.: PCA representation as a useful tool for detection of premature ventricular beats in 3-channel Holter recording by neural network and support vector machine classifier. In: Barreiro, J.M., Martín-Sánchez, F., Maojo, V., Sanz, F. (eds.) ISBMDA 2004. LNCS, vol. 3337, pp. 259–268. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Wagner, G.S.: Marriot’s Practical Electrocardiography. Williams & Wilkins, Baltimore (1994)

    Google Scholar 

  10. Vapnik, N.V.: Statistical Learning Theory. John Wiley & Sons Inc., New York (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jankowski, S., Dusza, J.J., Wierzbowski, M., Oręziak, A. (2005). SVM Detection of Premature Ectopic Excitations Based on Modified PCA. In: Oliveira, J.L., Maojo, V., Martín-Sánchez, F., Pereira, A.S. (eds) Biological and Medical Data Analysis. ISBMDA 2005. Lecture Notes in Computer Science(), vol 3745. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11573067_18

Download citation

  • DOI: https://doi.org/10.1007/11573067_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29674-4

  • Online ISBN: 978-3-540-31658-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics