Abstract
How visual attention is shared between objects moving in an observed scene is a key issue to situate vision in the world. In this note, we discuss how a computational model taking into account such issue, can be designed in a bayesian framework. To validate the model, experiments with eye-tracked human subjects are presented and discussed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hayhoe, M.M., Ballard, D.H., Bensinger, D.: Task constraints in visual working memory. Vision Research 38, 125–137 (1998)
Pylyshyn, Z.: Situating vision in the world. Trends in Cognitive Sciences 4, 197–207 (2000)
Zeki, S.: A Vision of the Brain. Backwell Science, Oxford (1993)
Goodale, M., Humphrey, G.: The objects of action and perception. Cognition 67, 181–207 (1998)
Krauzlis, R., Stone, L.: Tracking with the minds eye. Trends Neuroscience 22, 544–550 (1999)
Itti, L., Koch, C.: Computational modelling of visual attention. Nature Reviews - Neuroscience 2, 1–11 (2001)
Lee, T.S., Mumford, D.: Hierarchical bayesian inference in the visual cortex. J. Opt. Soc. Am. A 20, 1434–1448 (2003)
Anandan, P.: A computational framework and an algorithm for the measurment of visual motion. Int. Journal of Computer Vision 2, 283–310 (1989)
Boccignone, G., Ferraro, M., Napoletano, P.: Diffused expectation maximisation for image segmentation. Electronics Letters 40, 1107–1108 (2004)
Boccignone, G., Caggiano, V., Di Fiore, G., Marcelli, A., Napoletano, P.: Attentive video analysis using spatial-based and object-based cues. In: Proceedings CAMP 2005. IEEE Computer Soc. Press, Los Alamitos (2005)
Vasconcelos, N., Lippman, A.: Empirical bayesian motion segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 23, 217–220 (2001)
Weiss, Y., Adelson, E.: A unified mixture framework for motion segmentation: incorporating spatial coherence and estimating the number of models. In: Proc. IEEE Conf. CVPR 1996, pp. 321–326. IEEE Computer Soc. Press, Los Alamitos (1996)
Isard, M., Blake, A.: Condensation-conditional density propagation for visual tracking. International Journal of Computer Vision 29, 5–28 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Boccignone, G., Caggiano, V., Di Fiore, G., Marcelli, A., Napoletano, P. (2005). A Bayesian Approach to Situated Vision. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds) Brain, Vision, and Artificial Intelligence. BVAI 2005. Lecture Notes in Computer Science, vol 3704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11565123_35
Download citation
DOI: https://doi.org/10.1007/11565123_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29282-1
Online ISBN: 978-3-540-32029-6
eBook Packages: Computer ScienceComputer Science (R0)