A Bayesian Approach to Situated Vision | SpringerLink
Skip to main content

A Bayesian Approach to Situated Vision

  • Conference paper
Brain, Vision, and Artificial Intelligence (BVAI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3704))

Included in the following conference series:

Abstract

How visual attention is shared between objects moving in an observed scene is a key issue to situate vision in the world. In this note, we discuss how a computational model taking into account such issue, can be designed in a bayesian framework. To validate the model, experiments with eye-tracked human subjects are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hayhoe, M.M., Ballard, D.H., Bensinger, D.: Task constraints in visual working memory. Vision Research 38, 125–137 (1998)

    Article  Google Scholar 

  2. Pylyshyn, Z.: Situating vision in the world. Trends in Cognitive Sciences 4, 197–207 (2000)

    Article  Google Scholar 

  3. Zeki, S.: A Vision of the Brain. Backwell Science, Oxford (1993)

    Google Scholar 

  4. Goodale, M., Humphrey, G.: The objects of action and perception. Cognition 67, 181–207 (1998)

    Article  Google Scholar 

  5. Krauzlis, R., Stone, L.: Tracking with the minds eye. Trends Neuroscience 22, 544–550 (1999)

    Article  Google Scholar 

  6. Itti, L., Koch, C.: Computational modelling of visual attention. Nature Reviews - Neuroscience 2, 1–11 (2001)

    Google Scholar 

  7. Lee, T.S., Mumford, D.: Hierarchical bayesian inference in the visual cortex. J. Opt. Soc. Am. A 20, 1434–1448 (2003)

    Article  Google Scholar 

  8. Anandan, P.: A computational framework and an algorithm for the measurment of visual motion. Int. Journal of Computer Vision 2, 283–310 (1989)

    Article  Google Scholar 

  9. Boccignone, G., Ferraro, M., Napoletano, P.: Diffused expectation maximisation for image segmentation. Electronics Letters 40, 1107–1108 (2004)

    Article  Google Scholar 

  10. Boccignone, G., Caggiano, V., Di Fiore, G., Marcelli, A., Napoletano, P.: Attentive video analysis using spatial-based and object-based cues. In: Proceedings CAMP 2005. IEEE Computer Soc. Press, Los Alamitos (2005)

    Google Scholar 

  11. Vasconcelos, N., Lippman, A.: Empirical bayesian motion segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 23, 217–220 (2001)

    Article  Google Scholar 

  12. Weiss, Y., Adelson, E.: A unified mixture framework for motion segmentation: incorporating spatial coherence and estimating the number of models. In: Proc. IEEE Conf. CVPR 1996, pp. 321–326. IEEE Computer Soc. Press, Los Alamitos (1996)

    Google Scholar 

  13. Isard, M., Blake, A.: Condensation-conditional density propagation for visual tracking. International Journal of Computer Vision 29, 5–28 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boccignone, G., Caggiano, V., Di Fiore, G., Marcelli, A., Napoletano, P. (2005). A Bayesian Approach to Situated Vision. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds) Brain, Vision, and Artificial Intelligence. BVAI 2005. Lecture Notes in Computer Science, vol 3704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11565123_35

Download citation

  • DOI: https://doi.org/10.1007/11565123_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29282-1

  • Online ISBN: 978-3-540-32029-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics