Abstract
In this paper, we explore the syntactic relation patterns for open-domain factoid question answering. We propose a pattern extraction method to extract the various relations between the proper answers and different types of question words, including target words, head words, subject words and verbs, from syntactic trees. We further propose a QA-specific tree kernel to partially match the syntactic relation patterns. It makes the more tolerant matching between two patterns and helps to solve the data sparseness problem. Lastly, we incorporate the patterns into a Maximum Entropy Model to rank the answer candidates. The experiment on TREC questions shows that the syntactic relation patterns help to improve the performance by 6.91 MRR based on the common features.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berger, A., Della Pietra, S., Della Pietra, V.: A maximum entropy approach to natural language processing. Computational Linguistics 22(1), 39–71 (1996)
Collins, M.: A New Statistical Parser Based on Bigram Lexical Dependencies. In: Proceedings of ACL-1996, pp. 184-191 (1996)
Collins, M.: New Ranking Algorithms for Parsing and Tagging: Kernel over Discrete Structures, and the Voted Perceptron. In: Proceeings of ACL-2002 (2002)
Collins, M., Duffy, N.: Convolution Kernels for Natural Language. Advances in Neural Information Processing Systems, 14. MIT Press, Cambridge (2002)
Culotta, A., Sorensen, J.: Dependency Tree Kernels for Relation Extraction. In: Proceedings of ACL-2004 (2004)
Darroch, J., Ratcliff, D.: Generalized iterative scaling for log-linear models. The annuals of Mathematical Statistics 43, 1470–1480 (1972)
Echihabi, A., Hermjakob, U., Hovy, E., Marcu, D., Melz, E., Ravichandran, D.: Multiple-Engine Question Answering in TextMap. In: Proceedings of the TREC-2003 Conference, NIST (2003)
Fellbaum, C.: WordNet - An Electronic Lexical Database. MIT Press, Cambridge (1998)
Harabagiu, S., Moldovan, D., Clark, C., Bowden, M., Williams, J., Bensley, J.: Answer Mining by Combining Extraction Techniques with Abductive Reasoning. In: Proceedings of the TREC-2003 Conference, NIST (2003)
Ittycheriah, A., Roukos, S.: IBM’s Statistical Question Answering System - TREC 11. In: Proceedings of the TREC-2002 Conference, NIST (2002)
Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Doklady Akademii Nauk SSSR 163(4), 845–848 (1965)
Ravichandran, D., Hovy, E., Och, F.J.: Statistical QA - Classifier vs. Re-ranker: What’s the difference? In: Proceedings of Workshop on Multilingual Summarization and Question Answering, ACL (2003)
Ravichandran, D., Hovy, E.: Learning Surface Text Patterns for a Question Answering System. In: Proceedings of ACL-2002, pp. 41–47 (2002)
Soubbotin, M.M., Soubbotin, S.M.: Patterns of Potential Answer Expressions as Clues to the Right Answer. In: Proceedings of the TREC-10 Conference, NIST (2001)
Xu, J., Licuanan, A., May, J., Miller, S., Weischedel, R.: TREC 2002 QA at BBN: Answer Selection and Confidence Estimation. In: Proceedings of the TREC-2002 Conference, NIST (2002)
Vapnik, V.: Statistical Learning Theory, p. 732. John Wiley, NY (1998)
Zelenko, D., Aone, C., Richardella, A.: Kernel Methods for Relation Extraction. Journal of Machine Learning Research, 1083–1106 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shen, D., Kruijff, GJ.M., Klakow, D. (2005). Exploring Syntactic Relation Patterns for Question Answering. In: Dale, R., Wong, KF., Su, J., Kwong, O.Y. (eds) Natural Language Processing – IJCNLP 2005. IJCNLP 2005. Lecture Notes in Computer Science(), vol 3651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11562214_45
Download citation
DOI: https://doi.org/10.1007/11562214_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29172-5
Online ISBN: 978-3-540-31724-1
eBook Packages: Computer ScienceComputer Science (R0)