Exploring Syntactic Relation Patterns for Question Answering | SpringerLink
Skip to main content

Exploring Syntactic Relation Patterns for Question Answering

  • Conference paper
Natural Language Processing – IJCNLP 2005 (IJCNLP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3651))

Included in the following conference series:

  • 1621 Accesses

Abstract

In this paper, we explore the syntactic relation patterns for open-domain factoid question answering. We propose a pattern extraction method to extract the various relations between the proper answers and different types of question words, including target words, head words, subject words and verbs, from syntactic trees. We further propose a QA-specific tree kernel to partially match the syntactic relation patterns. It makes the more tolerant matching between two patterns and helps to solve the data sparseness problem. Lastly, we incorporate the patterns into a Maximum Entropy Model to rank the answer candidates. The experiment on TREC questions shows that the syntactic relation patterns help to improve the performance by 6.91 MRR based on the common features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berger, A., Della Pietra, S., Della Pietra, V.: A maximum entropy approach to natural language processing. Computational Linguistics 22(1), 39–71 (1996)

    Google Scholar 

  2. Collins, M.: A New Statistical Parser Based on Bigram Lexical Dependencies. In: Proceedings of ACL-1996, pp. 184-191 (1996)

    Google Scholar 

  3. Collins, M.: New Ranking Algorithms for Parsing and Tagging: Kernel over Discrete Structures, and the Voted Perceptron. In: Proceeings of ACL-2002 (2002)

    Google Scholar 

  4. Collins, M., Duffy, N.: Convolution Kernels for Natural Language. Advances in Neural Information Processing Systems, 14. MIT Press, Cambridge (2002)

    Google Scholar 

  5. Culotta, A., Sorensen, J.: Dependency Tree Kernels for Relation Extraction. In: Proceedings of ACL-2004 (2004)

    Google Scholar 

  6. Darroch, J., Ratcliff, D.: Generalized iterative scaling for log-linear models. The annuals of Mathematical Statistics 43, 1470–1480 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  7. Echihabi, A., Hermjakob, U., Hovy, E., Marcu, D., Melz, E., Ravichandran, D.: Multiple-Engine Question Answering in TextMap. In: Proceedings of the TREC-2003 Conference, NIST (2003)

    Google Scholar 

  8. Fellbaum, C.: WordNet - An Electronic Lexical Database. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  9. Harabagiu, S., Moldovan, D., Clark, C., Bowden, M., Williams, J., Bensley, J.: Answer Mining by Combining Extraction Techniques with Abductive Reasoning. In: Proceedings of the TREC-2003 Conference, NIST (2003)

    Google Scholar 

  10. Ittycheriah, A., Roukos, S.: IBM’s Statistical Question Answering System - TREC 11. In: Proceedings of the TREC-2002 Conference, NIST (2002)

    Google Scholar 

  11. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Doklady Akademii Nauk SSSR 163(4), 845–848 (1965)

    MathSciNet  Google Scholar 

  12. Ravichandran, D., Hovy, E., Och, F.J.: Statistical QA - Classifier vs. Re-ranker: What’s the difference? In: Proceedings of Workshop on Multilingual Summarization and Question Answering, ACL (2003)

    Google Scholar 

  13. Ravichandran, D., Hovy, E.: Learning Surface Text Patterns for a Question Answering System. In: Proceedings of ACL-2002, pp. 41–47 (2002)

    Google Scholar 

  14. Soubbotin, M.M., Soubbotin, S.M.: Patterns of Potential Answer Expressions as Clues to the Right Answer. In: Proceedings of the TREC-10 Conference, NIST (2001)

    Google Scholar 

  15. Xu, J., Licuanan, A., May, J., Miller, S., Weischedel, R.: TREC 2002 QA at BBN: Answer Selection and Confidence Estimation. In: Proceedings of the TREC-2002 Conference, NIST (2002)

    Google Scholar 

  16. Vapnik, V.: Statistical Learning Theory, p. 732. John Wiley, NY (1998)

    MATH  Google Scholar 

  17. Zelenko, D., Aone, C., Richardella, A.: Kernel Methods for Relation Extraction. Journal of Machine Learning Research, 1083–1106 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shen, D., Kruijff, GJ.M., Klakow, D. (2005). Exploring Syntactic Relation Patterns for Question Answering. In: Dale, R., Wong, KF., Su, J., Kwong, O.Y. (eds) Natural Language Processing – IJCNLP 2005. IJCNLP 2005. Lecture Notes in Computer Science(), vol 3651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11562214_45

Download citation

  • DOI: https://doi.org/10.1007/11562214_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29172-5

  • Online ISBN: 978-3-540-31724-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics