Abstract
In this paper, we describe, analyze and compare techniques for extracting spatial knowledge from a terrain model. Specifically, we investigate techniques for extracting a morphological representation from a terrain model based on an approximation of a Morse-Smale complex. A Morse-Smale complex defines a decomposition of a topographic surface into regions with vertices at the critical points and bounded by integral lines which connect passes to pits and peaks. This provides a terrain representation which encompasses the knowledge on the salient characteristics of the terrain. We classify the various techniques for computing a Morse-Smale complexe based on the underlying terrain model, a Regular Square Grid (RSG) or a Triangulated Irregular Network (TIN), and based on the algorithmic approach they apply. Finally, we discuss hierarchical terrain representations based on a Morse-Smale decomposition.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bajaj, C.L., Pascucci, V., Shikore, D.R.: Visualization of scalar topology for structural enhancement. In: Proceedings IEEE Visualization 1998, pp. 51–58. IEEE Computer Society, Los Alamitos (1998)
Bajaj, C.L., Shikore, D.R.: Topology preserving data simplification with error bounds. Computers and Graphics 22(1), 3–12 (1998)
Banchoff, T.: Critical points and curvature for embedded polyhedral surfaces. American Mathematical Monthly 77(5), 475–485 (1970)
Bremer, P., Pascucci, V., Hamann, B.: Maximizing adaptivity in hierarchical topological models. In: Proceedings of International Conference on Shape Modeling and Applications (2005)
Bremer, P.-T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A multi-resolution data structure for two-dimensional Morse functions. In: Turk, G., van Wijk, J., Moorhead, R. (eds.) Proceedings IEEE Visualization 2003, pp. 139–146. IEEE Computer Society, Los Alamitos (2003)
Danovaro, E., De Floriani, L., Mesmoudi, M.M.: Topological analysis and characterization of discrete scalar fields. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 386–402. Springer, Heidelberg (2003)
De Floriani, L., Magillo, P., Puppo, E.: Data structures for simplicial multi-complexes. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 33–51. Springer, Heidelberg (1999)
Danovaro, E., De Floriani, L., Magillo, P., Mesmoudi, M.M., Puppo, E.: Morphology-driven simplification and multiresolution modeling of terrains. In: Hoel, E., Rigaux, P. (eds.) Proceedings ACM GIS 2003 - The 11th International Symposium on Advances in Geographic Information Systems, pp. 63–70. ACM Press, New York (2003)
Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-Smale complexes for piecewise linear 3-manifolds. In: Proceedings 19th ACM Symposium on Computational Geometry, pp. 361–370 (2003)
Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse complexes for piecewise linear 2-manifolds. In: Proceedings 17th ACM Symposium on Computational Geometry, pp. 70–79. ACM Press, New York (2001)
Mangan, A., Whitaker, R.: Partitioning 3D surface meshes using watershed segmentation. IEEE Transaction on Visualization and Computer Graphics 5(4), 308–321 (1999)
Meyer, F.: Topographic distance and watershed lines. Signal Processing 38, 113–125 (1994)
Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963)
Nackman, L.R.: Two-dimensional critical point configuration graph. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6(4), 442–450 (1984)
Ni, X., Garland, M., Hart, J.C.: Fair morse functions for extracting the topological structure of a surface mesh. ACM Trans. Graph. 23(3), 613–622 (2004)
Pascucci, V.: Topology diagrams of scalar fields in scientific visualization. In: Rana, S. (ed.) Topological Data Structures for Surfaces, pp. 121–129. John Wiley and Sons Ltd., Chichester (2004)
Peucker, T.K., Douglas, D.H.: Detection of Surface-Specific Points by Local Parallel Processing of Discrete Terrain Elevation Data. Computer Graphics and Image Processing 4, 375–387 (1975)
Pfaltz, J.L.: Surface networks. Geographical Analysis 8, 77–93 (1976)
Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical recipes in c, 2nd edn. Cambridge University Press, Cambridge (1992)
Roerdink, J., Meijster, A.: The watershed transform: definitions, algorithms, and parallelization strategies. Fundamenta Informaticae 41, 187–228 (2000)
Schneider, B., Wood, J.: Construction of metric surface networks from raster-based DEMs. In: Rana, S. (ed.) Topological Data Structures for Surfaces, pp. 53–70. John Wiley and Sons Ltd, Chichester (2004)
Schneider, B.: Extraction of hierarchical surface networks from bilinear surface patches. Geographical Analysis 37, 244–263 (2005)
Smale, S.: Morse inequalities for a dynamical system. Bulletin of American Mathematical Society 66, 43–49 (1960)
Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Berlin (2004)
Takahashi, S.: Algorithms for extracting surface topology from digital elevation models. In: Rana, S. (ed.) Topological Data Structures for Surfaces, pp. 31–51. John Wiley and Sons Ltd., Chichester (2004)
Takahashi, S., Ikeda, T., Kunii, T.L., Ueda, M.: Algorithms for extracting correct critical points and constructing topological graphs from discrete geographic elevation data. Computer Graphics Forum 14(3), 181–192 (1995)
Toriwaki, J., Fukumura, T.: Extraction of structural information from gray pictures. Computer Graphics and Image Processing 7, 30–51 (1978)
Vincent, L., Soile, P.: Watershed in digital spaces: an efficient algorithm based on immersion simulation. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)
Watson, L.T., Laffey, T.J., Haralick, R.M.: Topographic classification of digital image intensity surfaces using generalized splines and the discrete cosine transformation. Computer Vision, Graphics, and Image Processing 29, 143–167 (1985)
Wolf, G.W.: Topographic surfaces and surface networks. In: Rana, S. (ed.) Topological Data Structures for Surfaces, pp. 15–29. John Wiley and Sons Ltd., Chichester (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Čomić, L., De Floriani, L., Papaleo, L. (2005). Morse-Smale Decompositions for Modeling Terrain Knowledge. In: Cohn, A.G., Mark, D.M. (eds) Spatial Information Theory. COSIT 2005. Lecture Notes in Computer Science, vol 3693. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11556114_27
Download citation
DOI: https://doi.org/10.1007/11556114_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28964-7
Online ISBN: 978-3-540-32020-3
eBook Packages: Computer ScienceComputer Science (R0)