Morse-Smale Decompositions for Modeling Terrain Knowledge | SpringerLink
Skip to main content

Morse-Smale Decompositions for Modeling Terrain Knowledge

  • Conference paper
Spatial Information Theory (COSIT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3693))

Included in the following conference series:

Abstract

In this paper, we describe, analyze and compare techniques for extracting spatial knowledge from a terrain model. Specifically, we investigate techniques for extracting a morphological representation from a terrain model based on an approximation of a Morse-Smale complex. A Morse-Smale complex defines a decomposition of a topographic surface into regions with vertices at the critical points and bounded by integral lines which connect passes to pits and peaks. This provides a terrain representation which encompasses the knowledge on the salient characteristics of the terrain. We classify the various techniques for computing a Morse-Smale complexe based on the underlying terrain model, a Regular Square Grid (RSG) or a Triangulated Irregular Network (TIN), and based on the algorithmic approach they apply. Finally, we discuss hierarchical terrain representations based on a Morse-Smale decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bajaj, C.L., Pascucci, V., Shikore, D.R.: Visualization of scalar topology for structural enhancement. In: Proceedings IEEE Visualization 1998, pp. 51–58. IEEE Computer Society, Los Alamitos (1998)

    Google Scholar 

  2. Bajaj, C.L., Shikore, D.R.: Topology preserving data simplification with error bounds. Computers and Graphics 22(1), 3–12 (1998)

    Article  Google Scholar 

  3. Banchoff, T.: Critical points and curvature for embedded polyhedral surfaces. American Mathematical Monthly 77(5), 475–485 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bremer, P., Pascucci, V., Hamann, B.: Maximizing adaptivity in hierarchical topological models. In: Proceedings of International Conference on Shape Modeling and Applications (2005)

    Google Scholar 

  5. Bremer, P.-T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A multi-resolution data structure for two-dimensional Morse functions. In: Turk, G., van Wijk, J., Moorhead, R. (eds.) Proceedings IEEE Visualization 2003, pp. 139–146. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  6. Danovaro, E., De Floriani, L., Mesmoudi, M.M.: Topological analysis and characterization of discrete scalar fields. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 386–402. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. De Floriani, L., Magillo, P., Puppo, E.: Data structures for simplicial multi-complexes. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 33–51. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Danovaro, E., De Floriani, L., Magillo, P., Mesmoudi, M.M., Puppo, E.: Morphology-driven simplification and multiresolution modeling of terrains. In: Hoel, E., Rigaux, P. (eds.) Proceedings ACM GIS 2003 - The 11th International Symposium on Advances in Geographic Information Systems, pp. 63–70. ACM Press, New York (2003)

    Chapter  Google Scholar 

  9. Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-Smale complexes for piecewise linear 3-manifolds. In: Proceedings 19th ACM Symposium on Computational Geometry, pp. 361–370 (2003)

    Google Scholar 

  10. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse complexes for piecewise linear 2-manifolds. In: Proceedings 17th ACM Symposium on Computational Geometry, pp. 70–79. ACM Press, New York (2001)

    Google Scholar 

  11. Mangan, A., Whitaker, R.: Partitioning 3D surface meshes using watershed segmentation. IEEE Transaction on Visualization and Computer Graphics 5(4), 308–321 (1999)

    Article  Google Scholar 

  12. Meyer, F.: Topographic distance and watershed lines. Signal Processing 38, 113–125 (1994)

    Article  MATH  Google Scholar 

  13. Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  14. Nackman, L.R.: Two-dimensional critical point configuration graph. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6(4), 442–450 (1984)

    Article  Google Scholar 

  15. Ni, X., Garland, M., Hart, J.C.: Fair morse functions for extracting the topological structure of a surface mesh. ACM Trans. Graph. 23(3), 613–622 (2004)

    Article  Google Scholar 

  16. Pascucci, V.: Topology diagrams of scalar fields in scientific visualization. In: Rana, S. (ed.) Topological Data Structures for Surfaces, pp. 121–129. John Wiley and Sons Ltd., Chichester (2004)

    Chapter  Google Scholar 

  17. Peucker, T.K., Douglas, D.H.: Detection of Surface-Specific Points by Local Parallel Processing of Discrete Terrain Elevation Data. Computer Graphics and Image Processing 4, 375–387 (1975)

    Article  Google Scholar 

  18. Pfaltz, J.L.: Surface networks. Geographical Analysis 8, 77–93 (1976)

    Article  Google Scholar 

  19. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical recipes in c, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  20. Roerdink, J., Meijster, A.: The watershed transform: definitions, algorithms, and parallelization strategies. Fundamenta Informaticae 41, 187–228 (2000)

    MATH  MathSciNet  Google Scholar 

  21. Schneider, B., Wood, J.: Construction of metric surface networks from raster-based DEMs. In: Rana, S. (ed.) Topological Data Structures for Surfaces, pp. 53–70. John Wiley and Sons Ltd, Chichester (2004)

    Chapter  Google Scholar 

  22. Schneider, B.: Extraction of hierarchical surface networks from bilinear surface patches. Geographical Analysis 37, 244–263 (2005)

    Article  Google Scholar 

  23. Smale, S.: Morse inequalities for a dynamical system. Bulletin of American Mathematical Society 66, 43–49 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  24. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Berlin (2004)

    Google Scholar 

  25. Takahashi, S.: Algorithms for extracting surface topology from digital elevation models. In: Rana, S. (ed.) Topological Data Structures for Surfaces, pp. 31–51. John Wiley and Sons Ltd., Chichester (2004)

    Chapter  Google Scholar 

  26. Takahashi, S., Ikeda, T., Kunii, T.L., Ueda, M.: Algorithms for extracting correct critical points and constructing topological graphs from discrete geographic elevation data. Computer Graphics Forum 14(3), 181–192 (1995)

    Article  Google Scholar 

  27. Toriwaki, J., Fukumura, T.: Extraction of structural information from gray pictures. Computer Graphics and Image Processing 7, 30–51 (1978)

    Article  Google Scholar 

  28. Vincent, L., Soile, P.: Watershed in digital spaces: an efficient algorithm based on immersion simulation. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)

    Article  Google Scholar 

  29. Watson, L.T., Laffey, T.J., Haralick, R.M.: Topographic classification of digital image intensity surfaces using generalized splines and the discrete cosine transformation. Computer Vision, Graphics, and Image Processing 29, 143–167 (1985)

    Article  Google Scholar 

  30. Wolf, G.W.: Topographic surfaces and surface networks. In: Rana, S. (ed.) Topological Data Structures for Surfaces, pp. 15–29. John Wiley and Sons Ltd., Chichester (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Čomić, L., De Floriani, L., Papaleo, L. (2005). Morse-Smale Decompositions for Modeling Terrain Knowledge. In: Cohn, A.G., Mark, D.M. (eds) Spatial Information Theory. COSIT 2005. Lecture Notes in Computer Science, vol 3693. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11556114_27

Download citation

  • DOI: https://doi.org/10.1007/11556114_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28964-7

  • Online ISBN: 978-3-540-32020-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics