Lung Field Segmentation in Digital Postero-Anterior Chest Radiographs | SpringerLink
Skip to main content

Lung Field Segmentation in Digital Postero-Anterior Chest Radiographs

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

Abstract

This paper describes a lung field segmentation method, working on digital Postero-Anterior chest radiographs. The lung border is detected by integrating the results obtained by two simple and classical edge detectors, thus exploiting their complementary advantages. The method makes no assumption regarding the chest position, size and orientation; it has been tested on a non-trivial set of real life cases, composed of 412 radiographs belonging to two different databases. The obtained results and the comparison with more complicate techniques presented in the literature, prove the robustness of the algorithm and demonstrate that rather simple and general methods, properly combined to fit the requirements of a specific application, can provide better results.

Work partially financed by CIMAINA and PRIN 2004: “Novel clustering techniques in biomedical image segmentation”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vyborny, C.: The aapm/rsna physics tutorial for residents: Image quality and the clinical radiographic examination. Radiographics 17, 479–498 (1997)

    Google Scholar 

  2. Hasegawa, A., et al.: Convolution neural network based detection of lung structure. In: Proc. SPIE, vol. 2167, pp. 654–662 (1994)

    Google Scholar 

  3. Duryea, J., Boone, J.M.: A fully automatic algorithm for the segmentation of lung fields in digital chest radiographic images. Med. Phys. 22 (1995)

    Google Scholar 

  4. Xu, X.W., Doi, K.: Image feature anlysis for computer aided diagnosis: accurate determination of ribcage boundaries chest radiographs. Med. Phys. 22 (1995)

    Google Scholar 

  5. McNitt-Gray, M.F., Huang, H.K., Sayre, J.W.: Feature selection in the pattern classification problem of digital chest radiographs segmentation. IEEE Trans. on Med. Imaging 14 (1995)

    Google Scholar 

  6. Armato, S.G., et al.: Automated lung segmentation in digitized posteroanterior chest radiographs. Academic radiology 5 (1998)

    Google Scholar 

  7. Brown, M.S., Wilson, L.S., Doust, B.D., Gill, R.W., Sun, C.: Knowledge-based method for segmentation and analysis of lung boundaries in chest x-rays images. Computerized Medical Imaging and Graphics 22, 463–477 (1998)

    Article  Google Scholar 

  8. Carrascal, F.M., et al.: Automatic calculation of total lung capacity from automatically traced lung boundaries in postero-anterior and lateral digital chest radiographs. Medical Physics 25, 1118–1131 (1998)

    Article  Google Scholar 

  9. Tsuji, O., et al.: Automated segmentation of anatomic regions in chest radiographs using an adaptive-sized hybrid neural network. Med. Phys. 25 (1998)

    Google Scholar 

  10. Vittitoe, N.F., Vargas-Voracek, R., Floyd Jr., C.E.: Markov random field modeling in posteroanterior chest radiograph segmentation. Med. Phys. 26 (1999)

    Google Scholar 

  11. van Ginneken, B., ter Haar Romeny, B.M., Viergever, M.A.: Computer-aided diagnosis in chest radiography: A survey. IEEE Trans. On Med. Imag. 20, 1228-1241 (2001)

    Google Scholar 

  12. van Ginneken, B., ter Haar Romeny, B.M.: Automatic segmentation of lung fields in chest radiographs. Medical Physics 27 (2000)

    Google Scholar 

  13. van Ginneken, B.: Computer-aided diagnosis in chest radiographs. P.h.D. dissertation, Utrecht Univ., Utrecht, The Nederlands (2001)

    Google Scholar 

  14. Shiraishi, et al.: Development of a digital image database for chest radiographs with and without a lung nodule. In: AJR, vol. 174 (2000)

    Google Scholar 

  15. Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. on Pattern Analysis and Machine Intelligence 13 (1991)

    Google Scholar 

  16. Lindeberg, T.: Scale-space: A framework for handling image structures at multiple scales. In: Proceedings of CERN, School of Computing, The Nederlands (1996)

    Google Scholar 

  17. Uchiyama, T., Arbib, M.: Color image segmentation using competitive learning. IEEE Trans. on Pattern An. and Machine Int. 16 (1994)

    Google Scholar 

  18. Campadelli, P., Casiraghi, E., Valentini, G.: Support vector machines for candidate nodules classification. Neurocomputing (2005) (In Press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Campadelli, P., Casiraghi, E. (2005). Lung Field Segmentation in Digital Postero-Anterior Chest Radiographs. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_81

Download citation

  • DOI: https://doi.org/10.1007/11552499_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics