Bone Segmentation in Metacarpophalangeal MR Data | SpringerLink
Skip to main content

Bone Segmentation in Metacarpophalangeal MR Data

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

Abstract

A robust, efficient segmentation algorithm for automatic segmentation of MR images of the metacarpophalangeal joint is presented. A preliminary segmentation detects bones in MR scans and uses histogram analysis, morphological operations and knowledge based rules to classify various tissues in the joint. The second part of the algorithm improves the segmentation mask and refines boundaries of bones using minimization of a sum of square deviations, automatic signal segmentation into an optimum number of segments, graph theory, and statistical analysis. The algorithm has been tested on 9 MR patient studies and detects 97% of all existing bones correctly with an average exceeding 80% mutual overlap between ground truth and detected regions

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. American College of Rheumatology of Osteoarthritis Guideline. Recommendations for the Medical Management of Osteoarthritis of the Hip and Knee. J. of Arthritis and Rheumatism 43, 1905–1915 (2000)

    Google Scholar 

  2. ANALYZE Software System, http://www.hoise.com/vmw/articles/LV-VM-04-98-10.html (last access May 26, 2005) and www.mayo.edu/bir (last access May 26, 2005)

  3. Bowyer, K.W.: Validation of Medical Image Analysis Techniques. In: Sonka, M., Fitz-patrick, J.M. (eds.) Handbook of Medical Imaging, pp. 567–607. SPIE Press, Bellingham (2000)

    Google Scholar 

  4. Golub, G.H., van Loan, C.F.: An Analysis of the Total Least Squares Problem SIAM. J. Numer. Anal. 17, 883–893 (1979)

    Article  Google Scholar 

  5. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing, pp. 407–410. Prentice Hall, Englewood Cliffs (2004)

    Google Scholar 

  6. Hogg, R.V., Allen, T.C.: Introduction to Mathematical Statistics. Prentice Hall Publ., Englewood Cliffs (1994)

    Google Scholar 

  7. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. Int. J. of Computer Vision 4, 321–331 (1987)

    Google Scholar 

  8. Kubassova, O., Boyle, R.D.: Segmentation of 4D Natural MR Images Based upon Morphological Image Analysis and Image Geometry. In: Proc. PREP 2005 Conference, Lancaster, UK, vol. 3, pp. 186–188 (2005)

    Google Scholar 

  9. Lim, K., Jae, S.: Two-Dimensional Signal and Image Processing, pp. 536–540. Prentice Hall, Englewood Cliffs (1990)

    Google Scholar 

  10. MatLab Image Processing User Guide Online, http://www.mathworks.com/access/helpdesk/help/toolbox/images/images.shtml (last access May 25, 2005)

  11. Ridler, T.W., Calvard, S.: Picture Thresholding Using an Iterative Selection Method. IEEE Trans. on Systems, Man and Cybernetics 8, 630–632 (1978)

    Google Scholar 

  12. Salvador, S., Chan, P.: Determining the Number of Clusters/Segments in Hierarchical Clustering/Segmentation Algorithms. In: Proc. 16th IEEE Intl. Conf. on Tools with AI, vol. 6, pp. 576–584 (2004)

    Google Scholar 

  13. Sonka, M., Hlavac, V., Boyle, R.D.: Image Processing Analysis, and Machine Vision. In: PWS, pp. 559–596 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kubassova, O., Boyle, R.D., Pyatnizkiy, M. (2005). Bone Segmentation in Metacarpophalangeal MR Data. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_80

Download citation

  • DOI: https://doi.org/10.1007/11552499_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics