Abstract
In a video surveillance system, moving object detection is the most challenging problem especially if the system is applied to complex environments with variable lighting, dynamic and articulate scenes, etc. Furthermore, a video surveillance system is a real-time application, so discouraging the use of good, but computationally expensive, solutions. This paper presents a set of improvements of a basic background subtraction algorithm that are suitable for video surveillance applications. Besides we present a new performance evaluation scheme never used in the context of moving object detection algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting Moving Objects, Ghosts, and Shadows in Video Streams. IEEE Trans. PAMI 25(10), 1337–1342 (2003)
Ellis, T., Xu, M.: Object Detection and Tracking in an Open and Dynamic World. In: Workshop on Performance Evaluation of Tracking Systems, PETS 2001 (2001)
Friedman, N., Russell, S.: Image segmentation in video sequences: a probabilistic approach. In: 13th Annual Conference on Uncertainty in Artificial Intelligence (1997)
Gupte, S., Masoud, O., Martin, R.F.K., Papanikolopoulos, N.P.: Detection and Classification of Vehicles. IEEE Transac. on ITS 3(1), 37–47 (2002)
Haritaoglu, I., Harwood, D., Davis, L.S.: W4: real-time surveillance of people and their activities. IEEE Transac. on PAMI 22(8), 809–830 (2000)
Heikkilä, J., Silvén, O.: A Real-Time System for Monitoring of Cyclists and Pedestrians. In: IEEE Workshop on Visual Surveillance (VS 1999), pp. 74–81 (1999)
Lo, B., Velastin, S.: Automatic congestion detection system for underground platforms. In: 2001 International symposium on intelligent multimedia, video, and speech processing, pp. 158–161 (2001)
Marcenaro, L., Ferrari, M., Marchesotti, L., Regazzoni, C.S.: Multiple object tracking under heavy occlusions by using Kalman filters based on shape matching. In: IEEE International Conference on Image Processing, vol. 3, pp. 341–344 (2002)
Matsushita, Y., Nishino, K., Ikeuchi, K., Sakauchi, M.: Illumination Normalization with Time-Dependent Intrinsic Image for Video Surveillance. IEEE Trans. on PAMI 26(10), 1336–1347 (2004)
Stauder, J., Mech, R., Ostermann, J.: Detection of moving cast shadows for object segmentation. IEEE Transac. on Multimedia 1(1), 65–76 (1999)
Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. on PAMI 22(8), 747–757 (2000)
Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and Practice of Background Maintenance. In: Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 255–261 (1999)
Wolf, C.: Text Detection in Images taken from Videos Sequences for Semantic Indexing, Ph.D. Thesis at INSA de Lyon, 20, rue Albert Einstein, 69621 Villeurbanne Cedex, France (2003)
Wren, C.R., Azarbayejani, A., Darrel, T., Pentland, A.P.: Pfinder: Real-Time Tracking of the Human Body. IEEE Trans. PAMI 19(7), 780–785 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Conte, D., Foggia, P., Petretta, M., Tufano, F., Vento, M. (2005). Meeting the Application Requirements of Intelligent Video Surveillance Systems in Moving Object Detection. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_72
Download citation
DOI: https://doi.org/10.1007/11552499_72
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28833-6
Online ISBN: 978-3-540-31999-3
eBook Packages: Computer ScienceComputer Science (R0)