Finding People in Video Streams by Statistical Modeling | SpringerLink
Skip to main content

Finding People in Video Streams by Statistical Modeling

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

  • 1918 Accesses

Abstract

The aim of our project is to design an algorithm for counting people in public transport vehicles such as buses by processing images from surveillance cameras’ video streams. This article presents a method of detection and tracking of multiple faces in a video by using a model of first and second order local moments. The three essential steps of our system are skin color modeling, probabilistic shape modeling and bayesian detection and tracking. An iterative process is used to estimate the position and shape of multiple faces in images, and to track them in video streams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ioffe, S., Forsyth, D.A.: Probabilistic Methods for Finding People. IJCV 43(1), 45–68 (2001)

    Article  MATH  Google Scholar 

  2. Yang, M.H., Kriegman, D., Ahuja, N.: Detecting face in images: a survey. IEEE PAMI 24(1), 34–58 (2002)

    Google Scholar 

  3. Hjelmas, E.: Face Detection: A Survey. Computer Vision and Image Understanding 83(3), 236–274 (2001)

    Article  MATH  Google Scholar 

  4. Wren, C., Azarbayejani, A., Darell, T., Pentland, A.: Pfinder: Real-time tracking of human body. IEEE PAMI 19(7), 780–785 (1997)

    Google Scholar 

  5. Haritaoglu, Harwood, D., Davis, L.: W4: A real-time system for detection and tracking of people and monitoring their activities. IEEE PAMI 22(8), 809–830 (2000)

    Google Scholar 

  6. Collins, R.T.,Lipton, A.J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O.: A System for Video Surveillance and Monitoring: VSAM Final Report, CMU-RI-TR-00-12, Carnegie Mellon University (May 2000)

    Google Scholar 

  7. Yang, G., Huang, T.S.: Human face detection in complex background. Pattern recognition 27(1), 53 (1994)

    Article  Google Scholar 

  8. Kwon, Y.H., da Vitoria Lobo, N.: Face Detection Using Templates. In: International Conference on Pattern Recognition, pp. 764–767 (1994)

    Google Scholar 

  9. Nanda, H., Davis, L.: Probabilistic template based pedestrian detection in infrared videos. IEEE Intelligent Vehicles 2002, Versailles, France, pp. 15–20 (2002)

    Google Scholar 

  10. Stauffer, C., Grimson, E.: Similarity templates for detection and recognition. In: Computer Vision and Pattern Recognition, Kauai, HI, pp. 221–228 (2001)

    Google Scholar 

  11. Xu, F., Liu, X., Fujimura, K.: Pedestrian Detection and Tracking with Night Vision. IEEE Transactions on Intelligent Transportation Systems 5(4) (2004)

    Google Scholar 

  12. Rowley, H., Baluja, S., Kanade, T.: Neural Network-Based Face Detection. IEEE Trans. Pattern Analysis and Machine Intelligence 20(1), 23–38 (1998)

    Article  Google Scholar 

  13. Schneiderman, H., Kanade, T.: Probabilistic Modeling of Local Appearance and Spatial Relationships for Object Recognition. In: IEEE CVPR, pp. 45–51 (1998)

    Google Scholar 

  14. Viola, P., Jones, M.J.: Robust Real-Time Face Detection. International Journal Computer Vision 57(2), 137–154 (2004)

    Article  Google Scholar 

  15. Hafed, Z.M., Levine, M.: Face Recognition Using the Discrete Cosine Transform. International Journal of Computer Vision 43(3), 167–188 (2001)

    Article  MATH  Google Scholar 

  16. Vogelhuber, V., Schmid, C.: Face Detection based on Generic Local Descriptors and Spatial Constraints. In: ICPR, vol. 1, pp. 1084–1087 (2000)

    Google Scholar 

  17. Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking. International Journal of Computer Vision 29(1), 5–28 (1998)

    Article  Google Scholar 

  18. Schwerdt, K., Crowley, J.L.: Robust face tracking using color. In: 4th Intl. Conf. on Automatic Face and Gesture Recognition, Grenoble, France, pp. 90–95 (2000)

    Google Scholar 

  19. Phillips, P.J., Moon, H., Rauss, P.J., Rizvi, S.: The FERET evaluation methodology for face recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10) (October 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harasse, S., Bonnaud, L., Desvignes, M. (2005). Finding People in Video Streams by Statistical Modeling. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_67

Download citation

  • DOI: https://doi.org/10.1007/11552499_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics