Abstract
The aim of our project is to design an algorithm for counting people in public transport vehicles such as buses by processing images from surveillance cameras’ video streams. This article presents a method of detection and tracking of multiple faces in a video by using a model of first and second order local moments. The three essential steps of our system are skin color modeling, probabilistic shape modeling and bayesian detection and tracking. An iterative process is used to estimate the position and shape of multiple faces in images, and to track them in video streams.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ioffe, S., Forsyth, D.A.: Probabilistic Methods for Finding People. IJCV 43(1), 45–68 (2001)
Yang, M.H., Kriegman, D., Ahuja, N.: Detecting face in images: a survey. IEEE PAMI 24(1), 34–58 (2002)
Hjelmas, E.: Face Detection: A Survey. Computer Vision and Image Understanding 83(3), 236–274 (2001)
Wren, C., Azarbayejani, A., Darell, T., Pentland, A.: Pfinder: Real-time tracking of human body. IEEE PAMI 19(7), 780–785 (1997)
Haritaoglu, Harwood, D., Davis, L.: W4: A real-time system for detection and tracking of people and monitoring their activities. IEEE PAMI 22(8), 809–830 (2000)
Collins, R.T.,Lipton, A.J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O.: A System for Video Surveillance and Monitoring: VSAM Final Report, CMU-RI-TR-00-12, Carnegie Mellon University (May 2000)
Yang, G., Huang, T.S.: Human face detection in complex background. Pattern recognition 27(1), 53 (1994)
Kwon, Y.H., da Vitoria Lobo, N.: Face Detection Using Templates. In: International Conference on Pattern Recognition, pp. 764–767 (1994)
Nanda, H., Davis, L.: Probabilistic template based pedestrian detection in infrared videos. IEEE Intelligent Vehicles 2002, Versailles, France, pp. 15–20 (2002)
Stauffer, C., Grimson, E.: Similarity templates for detection and recognition. In: Computer Vision and Pattern Recognition, Kauai, HI, pp. 221–228 (2001)
Xu, F., Liu, X., Fujimura, K.: Pedestrian Detection and Tracking with Night Vision. IEEE Transactions on Intelligent Transportation Systems 5(4) (2004)
Rowley, H., Baluja, S., Kanade, T.: Neural Network-Based Face Detection. IEEE Trans. Pattern Analysis and Machine Intelligence 20(1), 23–38 (1998)
Schneiderman, H., Kanade, T.: Probabilistic Modeling of Local Appearance and Spatial Relationships for Object Recognition. In: IEEE CVPR, pp. 45–51 (1998)
Viola, P., Jones, M.J.: Robust Real-Time Face Detection. International Journal Computer Vision 57(2), 137–154 (2004)
Hafed, Z.M., Levine, M.: Face Recognition Using the Discrete Cosine Transform. International Journal of Computer Vision 43(3), 167–188 (2001)
Vogelhuber, V., Schmid, C.: Face Detection based on Generic Local Descriptors and Spatial Constraints. In: ICPR, vol. 1, pp. 1084–1087 (2000)
Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking. International Journal of Computer Vision 29(1), 5–28 (1998)
Schwerdt, K., Crowley, J.L.: Robust face tracking using color. In: 4th Intl. Conf. on Automatic Face and Gesture Recognition, Grenoble, France, pp. 90–95 (2000)
Phillips, P.J., Moon, H., Rauss, P.J., Rizvi, S.: The FERET evaluation methodology for face recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10) (October 2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Harasse, S., Bonnaud, L., Desvignes, M. (2005). Finding People in Video Streams by Statistical Modeling. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_67
Download citation
DOI: https://doi.org/10.1007/11552499_67
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28833-6
Online ISBN: 978-3-540-31999-3
eBook Packages: Computer ScienceComputer Science (R0)