Object Coding for Real Time Image Processing Applications | SpringerLink
Skip to main content

Object Coding for Real Time Image Processing Applications

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

Abstract

This paper presents an object coding scheme based on varying Bezier polynomials between cubics, quadratics and linears. Extracted data points, without any other overhead, are the end product of this scheme which form set of Bezier control points. Corner detection as a preprocessing phase simplifies subsequent coding operation and properties of Bezier splines are exploited to extract final data points. The proposed method results in high data reduction without any compromise to the quality of reconstructed shapes. The coding scheme is suitable for real time image processing applications due to its high compression ratio, efficient and accurate representation of given shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kartikeyan, B., Sarkar, A.: Shape description by time series. IEEE trans. on PAMI 11, 977–984 (1989)

    Google Scholar 

  2. Kashyap, R., Dhellapa, R.: Stochastic models for closed boundary analysis: Representation and reconstruction. IEEE trans. on information theory 27, 627–637 (1981)

    Article  MATH  Google Scholar 

  3. Blum, H.: A transformation for extracting new descriptors of the shape. In: Whaten-Dunn (ed.) Models of the Perception of Speech and Visual Forms, pp. 362–380. MIT Press, Cambridge (1967)

    Google Scholar 

  4. Koenderink, J.J., van Doorn, A.J.: The internal representation of solid shape with respect to vision. Biol. Cyber. 32, 211–216 (1979)

    Article  MATH  Google Scholar 

  5. Freeman, H.: On the Encoding of Arbitrary Geometric Configurations. IEEE Transactions on Elec. Computer 10, 260–268 (1961)

    Article  MathSciNet  Google Scholar 

  6. Saghri, J., Freeman, H.: Analysis of the precision of generalized chain codes for the representation of planar curves. IEEE Trans. PAMI 3, 533–539 (1981)

    Google Scholar 

  7. Koplowitz, J.: On the performance of chain codes for quantization of the line drawings. IEEE Trans. On PAMI 3, 180–185 (1981)

    MATH  Google Scholar 

  8. Neuhoff, D., Castor, K.: A rate and distortion analysis of chain codes for line drawings. IEEE Trans on info. theory 31, 53–68 (1985)

    Article  MATH  Google Scholar 

  9. Kaneko, T., Okudaira, M.: Encoding of arbitrary curves based on the chain code representation. IEEE Trans. on Comm. 33, 697–707 (1985)

    Article  Google Scholar 

  10. Cronin, T.M.: A boundary concavity code to support dominant points detection. Pattern Recognition Lett. 20, 617–634 (1999)

    Article  Google Scholar 

  11. Ray, B.K., Ray, K.S.: Detection of significant points and polygonal approximation of digital curves. Pattern Recognition Lett. 13, 443–452 (1992)

    Article  Google Scholar 

  12. Marji, M., Siy, P.: A new algorithm for dominant points detection and polygonization of digital curves. Pattern Recognition 36, 2239–2251 (2003)

    Article  MATH  Google Scholar 

  13. Sarfraz, M., Asim, M.R., Masood, A.: Piecewise polygonal approximation of digital curves. In: Proc. of 8th IEEE International Conference on Information Visualisation, pp. 991–996. IEEE Computer Society Press, USA (2004)

    Chapter  Google Scholar 

  14. Hölzle, G.E.: Knot placement for piecewise polynomial approximation of curves. Computer Aided Design 15(5), 295–296 (1983)

    Article  Google Scholar 

  15. Sarfraz, M., Razzak, M.F.A.: An algorithm for automatic capturing of font outlines. Journal of Computers & Graphics, Elsevier Science 26(5), 795–804 (2002)

    Google Scholar 

  16. Sarfraz, M., Khan, M.: Towards automation of capturing outlines of Arabic fonts. In: Proc. of the Third KFUPM Workshop on Information and Computer Science: Software Development for the New Millennium, Saudi Arabia, pp. 83–98 (2000)

    Google Scholar 

  17. Sarfraz, M.: Some algorithms for curve design and automatic outline capturing of images. Int. J. Image Graphics 4(2), 301–324 (2004)

    Article  Google Scholar 

  18. Bezier, P.: Mathematical and practical possibilities of UNISURF in Barnhill. Computer Aided Geometric Design. Academic Press, New York (1974)

    Google Scholar 

  19. Sarfraz, M., Masood, A., Asim, M.R.: A new approach to corner detection. In: Proc. of International Conference on Computer Vision and Graphics (2004)

    Google Scholar 

  20. Chetverikov, D., Szabo, Z.: A simple and efficient algorithm for detection of high curvature points in planner curves. In: Proc. 23rd workshop of Australian Pattern Recognition Group, Steyr, pp. 175–184 (1999)

    Google Scholar 

  21. Beus, H.L., Tiu, S.S.H.: An improved corner detection algorithm based on chain coded plane curves. Pattern Recognition 20, 291–296 (1987)

    Article  Google Scholar 

  22. Rosenfeld, A., Weszka, J.S.: An improved method of angle detection on digital curves. IEEE Trans. Computer 24, 940–941 (1975)

    Article  Google Scholar 

  23. Hearn, D., Baker, M.P.: Computer Graphics. Prentice-Hall publication, Englewood Cliffs (1997)

    Google Scholar 

  24. Saux, E., Daniel, M.: Data reduction of polynomial curves using B-splines. Computer- Aided Design 31(8), 507–515 (1999)

    Article  MATH  Google Scholar 

  25. Lyche, T., Morken, K.: A Data-reduction strategy for splines with applications to the approximation of functions and data. IMA Journal of Numerical Analysis 8, 185–208 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hamann, B., Chen, J.L.: Data point selection for piecewise linear curve approximation. Computer-Aided Design 25(11), 699–710 (1993)

    Article  Google Scholar 

  27. Razdan, A.: Knot placement for B-spline curve approximation. Technical Report, Arizona State University (1999)

    Google Scholar 

  28. Lu, F., Milios, E.: Optimal spline fitting to planar shape. Signal Process 37, 129–140 (1994)

    Article  Google Scholar 

  29. Masood, A., Sarfraz, M.: Cubic Bezier approximation for capturing outlines of 2D objects. Accepted for publication in the Proc. of 1st International Conference on Geometric Modeling. Visualization & Graphics in conjunction with 8th Joint Conference on InformationSciences, USA (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Masood, A., Haq, S.A. (2005). Object Coding for Real Time Image Processing Applications. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_61

Download citation

  • DOI: https://doi.org/10.1007/11552499_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics