Weighted Adaptive Neighborhood Hypergraph Partitioning for Image Segmentation | SpringerLink
Skip to main content

Weighted Adaptive Neighborhood Hypergraph Partitioning for Image Segmentation

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

Abstract

The aim of this paper is to present an improvement of a previously published algorithm. The proposed approach is performed in two steps. In the first step, we generate the Weighted Adaptive Neighborhood Hypergraph (WAINH) of the given gray-scale image. In the second step, we partition the WAINH using a multilevel hypergraph partitioning technique. To evaluate the algorithm performances, experiments were carried out on medical and natural images. The results show that the proposed segmentation approach is more accurate than the graph based segmentation algorithm using normalized cut criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intellignece 22 (2000)

    Google Scholar 

  2. Soundararajan, P., Sarkar, S.: An in-depth study of graph partitioning measures for perceptual organization. IEEE Trans. Pattern Anal. Mach. Intell. 25, 642–660 (2003)

    Article  Google Scholar 

  3. Martinez, A.M., Mittrapiyanuruk, P., Kak, A.C.: On combining graph-partitioning with non-parametric clustering for image segmentation. Computer Vision and Image Understanding 95, 72–85 (2004)

    Article  Google Scholar 

  4. Wang, S., Siskind, J.M.: Image segmentation with ratio cut - supplemental material. IEEE Trans. Pattern Anal. Mach. Intell. 25 (2003)

    Google Scholar 

  5. Soundararajan, P., Sarkar, S.: Analysis of mincut, average cut, and normalized cut measures. In: Proc. Third Workshop Perceptual Organization in Computer Vision (2001)

    Google Scholar 

  6. Cour, T., Florence Benzit, J.S.: Spectral segmentation with multiscale graph decomposition. In: IEEE International Conference on Computer Vision and Pattern Recognition (2005) (to appear)

    Google Scholar 

  7. Rital, S., Bretto, A., Aboutajdine, D., Cherifi, H.: Application of adaptive hy-pergraph model to impulsive noise detection. In: Skarbek, W. (ed.) CAIP 2001. LNCS, vol. 2124, pp. 555–562. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Rital, S., Cherifi, H.: A combinatorial color edge detector. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 289–297. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Rital, S., Cherifi, H., Miguet, S.: Neighborhood hypergraph partitioning for image segmentation. In: First International Conference on Pattern Recognition and Machine Intelligence, pp. 18–22 (2005)

    Google Scholar 

  10. Bretto, A., Azema, J., Cherifi, H., Laget, B.: Combinatorics and image processing. Graphical Models and Image Processing 5, 265–372 (1997)

    Article  Google Scholar 

  11. Catalyurek, U., Aykanat, C.: Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication. IEEE Trans. Parallel Distrib. Syst. 10, 673–693 (1999)

    Article  Google Scholar 

  12. Trifunovic, A., Knottenbelt, W.: A parallel algorithm for multilevel k-way hyper-graph partitioning. In: Proceedings of 3rd International Symposium on Parallel and Distributed Computing (2004)

    Google Scholar 

  13. Ihler, E., Wagner, D., Wagner, F.: Modeling hypergraphs by graphs with the same mincut properties. Inf. Process. Lett. 45, 171–175 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sanchis, L.A.: Multiple-way network partitioning. IEEE Transactions on Computers, 62–81 (1989)

    Google Scholar 

  15. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: applications in vlsi domain. IEEE Trans. Very Large Scale Integr. Syst. 7, 69–79 (1999)

    Article  Google Scholar 

  16. Karypis, G., Kumar, V.: hmetis 1.5: A hypergraph partitioning package. Technical report, University of Minnesota (1998), Available on http://www.cs.umn.edu/hmetis

  17. Trifunovic, A., Knottenbelt, W.: Parkway 2.0: A parallel multilevel hypergraph partitioning tool. In: Aykanat, C., Dayar, T., Körpeoğlu, İ. (eds.) ISCIS 2004. LNCS, vol. 3280, pp. 789–800. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., New York (1979)

    MATH  Google Scholar 

  19. Karypis, G.: Multilevel hypergraph partitioning. Technical report #02-25, University of Minnesota (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rital, S., Cherifi, H., Miguet, S. (2005). Weighted Adaptive Neighborhood Hypergraph Partitioning for Image Segmentation. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_58

Download citation

  • DOI: https://doi.org/10.1007/11552499_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics