Texture Detection for Image Analysis | SpringerLink
Skip to main content

Texture Detection for Image Analysis

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

  • 1977 Accesses

Abstract

Many applications such as image compression, pre-processing or segmentation require some information from the regions composing an image. The main objective of this paper is to define a methodology to extract some local information from an image. Each region is characterized in terms of homogeneity (region composed with the same grey-level or a single texture) and its type (textured or uniform). The decision criterion is based on the use of classical texture attributes (cooccurrence matrix and grey-levels moments) and a support vector machine in order to realize the fusion of the different attributes. We then characterize each region considering its type by appropriate features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Augusteijn, M.F., Clemens, L.E., Shaw, K.A.: Performance evaluation of textre measures for ground cover identification in satellite images by means of a neural network classifier. IEEE Transactions on Geoscience and Remote Sensing 33(3), 616–626 (1995)

    Article  Google Scholar 

  2. Ballarin, V., Moler, E., Brun, M.: Scale invariant texture classification with mathematical morphology. In: EUSIPCO, vol. (4), pp. 2533–2536 (1998)

    Google Scholar 

  3. Brodatz, P.: Textures A photographic album for artists and designers. Dover, New York (1966)

    Google Scholar 

  4. Cartensen, J.M.: Cooccurence feature performance in texture classification. In: Proc. of the Scandinavian Conference on Image Analysis, vol. (1), pp. 831–838 (1993)

    Google Scholar 

  5. Chabrier, S., Rosenberger, C., Laurent, H., Emile, B., Marche, P.: Evaluating the segmentation result of a grey-level image. In: EUSIPCO (2004)

    Google Scholar 

  6. Hofmann, T., Puzicha, J., Buhmann, J.M.: Unsupervised Texture Segmentation in a Deterministic Annealing Framework. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 803–818 (1998)

    Article  Google Scholar 

  7. Haralick, R.M., Shanmungan, K., Dinstein, I.: Textural features for image classification. IEEE Transactions on Systems Man and Cybernetics 6(3) (1979)

    Google Scholar 

  8. Manian, V., Vasquez, R., Katiyar, P.: Texture classification using logical operators. IEEE Transactions on image processing 9(10), 1693–1703 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Puzicha, J., Hofmann, T., Buhmann, J.M.: Histogram Clustering for Unsupervised Segmentation and Image retrieval. Pattern Recognition Letters 20(9), 899–909 (1999)

    Article  Google Scholar 

  10. Rosenfeld, A., Troy, E.: Visual Texture Analysis, Tech. Report, 70-116 (1970)

    Google Scholar 

  11. Rosenberger, C.: Implementation of an Adaptive Image Segmentation System, Phd thesis Université de Rennes I (1999)

    Google Scholar 

  12. Rosenberger, C., Chehdi, K.: Towards a complete adaptive analysis of an image. International Journal of Electronic Imaging 12(2), 292–298 (2003)

    Article  Google Scholar 

  13. Singh, M., Singh, S.: Texture algoithms: performance variability across data sets. Taylor and Francis, Cybernetics and Systems 34(1) (2003)

    Google Scholar 

  14. Valkealahti, K., Oja, E.: Reduced Multidimensional Cooccurrence Histograms in Texture Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(1) (1998)

    Google Scholar 

  15. Won, C.S., Choe, Y.: Image block classification using stochastic image segmentation. Electronics Letters 32(16), 1462–1463 (1996)

    Article  Google Scholar 

  16. Zhu, S.C., Liu, X.W., Wu, Y.N.: Exploring Texture Ensembles by Efficient Markov Chain Monte Carlo. Toward a trichromacy theory of texture. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(6), 554–569 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chabrier, S., Emile, B., Rosenberger, C. (2005). Texture Detection for Image Analysis. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_51

Download citation

  • DOI: https://doi.org/10.1007/11552499_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics