Unsupervised Markovian Segmentation on Graphics Hardware | SpringerLink
Skip to main content

Unsupervised Markovian Segmentation on Graphics Hardware

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

  • 1924 Accesses

Abstract

This contribution shows how unsupervised Markovian segmentation techniques can be accelerated when implemented on graphics hardware equipped with a Graphics Processing Unit (GPU). Our strategy exploits the intrinsic properties of local interactions between sites of a Markov Random Field model with the parallel computation ability of a GPU. This paper explains how classical iterative site-wise-update algorithms commonly used to optimize global Markovian cost functions can be efficiently implemented in parallel by fragment shaders driven by a fragment processor. This parallel programming strategy significantly accelerates optimization algorithms such as ICM and simulated annealing. Good acceleration are also achieved for parameter estimation procedures such as K-means and ICE. The experiments reported in this paper have been obtained with a mid-end, affordable graphics card available on the market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lucchese, L., Mitra, S.: Color Image Segmentation: A State-of-the-Art Survey. In: Proc. of INSA-A (2003)

    Google Scholar 

  2. Geman, S., Geman, D.: Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. J. IEEE Trans. Pattern Anal. Machine Intell. 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  3. Besag, J.: On the Statistical Analysis of Dirty Pictures. J. Roy. Stat. Soc. 48(3), 259–302 (1986)

    MATH  MathSciNet  Google Scholar 

  4. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1996) ISBN:0-19-853849-9

    MATH  Google Scholar 

  5. Pieczynski, W.: Statistical Image Segmentation. J. Machine Graphics and Vision (1), 261–268 (1992)

    Google Scholar 

  6. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing. J. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  7. Chou, P., Brown, C.: The Theory and Practice of Bayesian Image labeling. In: Proc. of ICCV, pp. 185–210 (1990)

    Google Scholar 

  8. Kruger, J., Westermann, R.: Linear algebra operators for GPU implementation of numerical algorithms. J. ACM Trans. Graph. 22(3), 908–916 (2003)

    Article  Google Scholar 

  9. Moreland, K., Angel, E.: The FFT on a GPU. In: Proc. of Workshop on Graphics Hardware, pp. 112–119 (2003)

    Google Scholar 

  10. http://www.gpgpu.org/

  11. Dumontier, C., Luthon, F., Charras, J.-P.: Real-Time DSP Implementation for MFR-Based Video Motion Detection. J. IEEE Trans. on Img. Proc. 8(10), 1341–1347 (1999)

    Article  Google Scholar 

  12. Murray, D., Kashko, A., Buxton, H.: A Parallel Approach to the Picture Restoration Algorithm of Geman and Geman on a SIMD Machine. J. Image and Vision Computing 4, 141–152 (1986)

    Google Scholar 

  13. Rost, R.: OpenGL Shading Language, 1st edn. Addison-Wesley, Reading (2004)

    Google Scholar 

  14. Akenine-Moller, T., Haines, E.: Real-time Rendering, 2nd edn. AK Peters (2002)

    Google Scholar 

  15. Fernando, R., Kilgard, M.: The Cg Tutorial: The Definitive Guide to Programmable Real-Time Graphics. Addison-Wesley, Reading (2003)

    Google Scholar 

  16. Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. J. Int. J. Comput. Vis. 12(1), 43–77 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jodoin, PM., St-Amour, JF., Mignotte, M. (2005). Unsupervised Markovian Segmentation on Graphics Hardware. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_50

Download citation

  • DOI: https://doi.org/10.1007/11552499_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics