Abstract
In this paper, we propose a novel method for cross-media semantic-based information retrieval, which combines classical text- based and content-based image retrieval techniques. This semantic-based approach aims at determining the strong relationships between keywords (in the caption) and types of visual features associated with its typical images. These relationships are then used to retrieve images from a textual query. In particular, the association keyword/visual feature may allow us to retrieve non-annotated but similar images to those retrieved by a classical textual query. It can also be used for automatic images annotation. Our experiments on two different databases show that this approach is promising for cross-media retrieval.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, Y., Wang, J.Z., Krovetz, R.: Content-based image retrieval by clustering. In: MIR 2003: Proceedings of the 5th ACM SIGMM international workshop on Multimedia information retrieval, New York, NY, USA, pp. 193–200. ACM Press, New York (2003)
Vailaya, A., Figueiredo, A.T., Jain, A.K., Zhang, H.-J.: Image classification for content-based indexing. IEEE Transactions on Image Processing 10, 117–130 (2001)
Wang, W., Song, Y., Zhang, A.: Semantic-based image retrieval by region saliency. In: Lew, M., Sebe, N., Eakins, J.P. (eds.) CIVR 2002. LNCS, vol. 2383, p. 29. Springer, Heidelberg (2002)
Jeon, J., Lavrenko, V., Manmatha, R.: Automatic image annotation and retrieval using cross-media relevance models. In: ACM SIGIR (2003)
Carson, C., Thomas, M., Belongie, S., Hellerstein, J.M., Malik, J.: Blobworld: A system for region-based image indexing and retrieval. In: Third International Conference on Visual Information Systems, pp. 509–516. Springer, Heidelberg (1999)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 888–905 (2000)
Barnard, K., Duygulu, P., Forsyth, D.: Modeling the statistics of image features and associated text (2002)
Li, J., Wang, J.Z.: Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1075–1088 (2003)
Tamura, H., Mori, S., Yamawaki, T.: Texture features corresponding to visual perception. IEEE Transactions on Systems, Man, and Cybernetics 8, 460–473 (1978)
Puzicha, J., Rubner, Y., Tomasi, C., Buhmann, J.: Empirical evaluation of dissimilarity measures for color and texture. In: International Conference on Computer Vision, September 1999, vol. 2, pp. 1165–1173 (1999)
Goldberg, M., Boucher, P., Shlien, S.: Image compression using adaptative vector quantization. IEEE Transactions on Communications [legacy, pre - 1988] 34, 180–187 (1986)
Linde, Y., Buzo, A., Gray, R.M.: An algorithm for vector quantizer design. IEEE Transactions on Communications, COM 28, 84–95 (1980)
Alvarez, C., Oumohmed, A.I., Mignotte, M., Nie, J.-Y.: Toward cross-language and cross-media image retrieval. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 525–534. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Oumohmed, A.I., Mignotte, M., Nie, JY. (2005). Semantic-Based Cross-Media Image Retrieval. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_47
Download citation
DOI: https://doi.org/10.1007/11552499_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28833-6
Online ISBN: 978-3-540-31999-3
eBook Packages: Computer ScienceComputer Science (R0)