Semantic-Based Cross-Media Image Retrieval | SpringerLink
Skip to main content

Semantic-Based Cross-Media Image Retrieval

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

Abstract

In this paper, we propose a novel method for cross-media semantic-based information retrieval, which combines classical text- based and content-based image retrieval techniques. This semantic-based approach aims at determining the strong relationships between keywords (in the caption) and types of visual features associated with its typical images. These relationships are then used to retrieve images from a textual query. In particular, the association keyword/visual feature may allow us to retrieve non-annotated but similar images to those retrieved by a classical textual query. It can also be used for automatic images annotation. Our experiments on two different databases show that this approach is promising for cross-media retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, Y., Wang, J.Z., Krovetz, R.: Content-based image retrieval by clustering. In: MIR 2003: Proceedings of the 5th ACM SIGMM international workshop on Multimedia information retrieval, New York, NY, USA, pp. 193–200. ACM Press, New York (2003)

    Chapter  Google Scholar 

  2. Vailaya, A., Figueiredo, A.T., Jain, A.K., Zhang, H.-J.: Image classification for content-based indexing. IEEE Transactions on Image Processing 10, 117–130 (2001)

    Article  MATH  Google Scholar 

  3. Wang, W., Song, Y., Zhang, A.: Semantic-based image retrieval by region saliency. In: Lew, M., Sebe, N., Eakins, J.P. (eds.) CIVR 2002. LNCS, vol. 2383, p. 29. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Jeon, J., Lavrenko, V., Manmatha, R.: Automatic image annotation and retrieval using cross-media relevance models. In: ACM SIGIR (2003)

    Google Scholar 

  5. Carson, C., Thomas, M., Belongie, S., Hellerstein, J.M., Malik, J.: Blobworld: A system for region-based image indexing and retrieval. In: Third International Conference on Visual Information Systems, pp. 509–516. Springer, Heidelberg (1999)

    Google Scholar 

  6. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 888–905 (2000)

    Article  Google Scholar 

  7. Barnard, K., Duygulu, P., Forsyth, D.: Modeling the statistics of image features and associated text (2002)

    Google Scholar 

  8. Li, J., Wang, J.Z.: Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1075–1088 (2003)

    Article  Google Scholar 

  9. Tamura, H., Mori, S., Yamawaki, T.: Texture features corresponding to visual perception. IEEE Transactions on Systems, Man, and Cybernetics 8, 460–473 (1978)

    Article  Google Scholar 

  10. Puzicha, J., Rubner, Y., Tomasi, C., Buhmann, J.: Empirical evaluation of dissimilarity measures for color and texture. In: International Conference on Computer Vision, September 1999, vol. 2, pp. 1165–1173 (1999)

    Google Scholar 

  11. Goldberg, M., Boucher, P., Shlien, S.: Image compression using adaptative vector quantization. IEEE Transactions on Communications [legacy, pre - 1988] 34, 180–187 (1986)

    Article  Google Scholar 

  12. Linde, Y., Buzo, A., Gray, R.M.: An algorithm for vector quantizer design. IEEE Transactions on Communications, COM 28, 84–95 (1980)

    Article  Google Scholar 

  13. Alvarez, C., Oumohmed, A.I., Mignotte, M., Nie, J.-Y.: Toward cross-language and cross-media image retrieval. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 525–534. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oumohmed, A.I., Mignotte, M., Nie, JY. (2005). Semantic-Based Cross-Media Image Retrieval. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_47

Download citation

  • DOI: https://doi.org/10.1007/11552499_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics