Improving Tracking by Handling Occlusions | SpringerLink
Skip to main content

Improving Tracking by Handling Occlusions

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

Abstract

Keeping track of a target by successive detections may not be feasible, whereas it can be accomplished by using tracking techniques. Tracking can be addressed by means of particle filtering. We have developed a new algorithm which aims to deal with some particle-filter related problems while coping with expected difficulties. In this paper, we present a novel approach to handling complete occlusions. We focus also on the target-model update conditions, ensuring proper tracking. The proposal has been successfully tested in sequences involving multiple targets, whose dynamics are highly non-linear, moving over clutter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arulampalam, S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for on-line non-linear/non-gaussian bayesian tracking. Tran. on Signal Processing 50(2), 174–188 (2002)

    Article  Google Scholar 

  2. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(5), 564–577 (2003)

    Article  Google Scholar 

  3. Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. International Journal of Computer Vision 61(2), 185–205 (2005)

    Article  Google Scholar 

  4. Doucet, A.: On sequential simulation-based methods for bayesian filtering. Technical Report TR310, Cambridge University (1998)

    Google Scholar 

  5. Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking. International Journal of Computer Vision 29(1), 5–28 (1998)

    Article  Google Scholar 

  6. King, O., Forsyth, D.A.: How does CONDENSATION behave with a finite number of samples? In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 695–709. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. MacCormick, J., Blake, A.: A probabilistic exclusion principle for tracking multiple objects. In: ICCV, pp. 572–578 (1999)

    Google Scholar 

  8. Nummiaro, K., Koller-Meier, E.B., Van Gool, L.: An adaptive color-based particle filter. Image and Vision Computing 21(1), 99–110 (2003)

    Article  Google Scholar 

  9. Rowe, D., Rius, I., González, J., Roca, X., Villanueva, J.J.: Probabilistic Image-based Tracking: Improving Particle Filtering. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 85–92. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Russell, R., Norvig, P.: Artificial Intelligence, a Modern Approach, 2nd edn., ch. 13-15. Prentice Hall, Englewood Cliffs (2003)

    Google Scholar 

  11. van der Merwe, R., de Freitas, N., Doucet, A., Wan, E.: The Unscented Particle Filter. Technical Report TR380, Cambridge University (2000)

    Google Scholar 

  12. Varona, X., Gonzàlez, J., Roca, X., Villanueva, J.J.: iTrack: Image-based Probabilistic Tracking of People. In: 15th ICPR, Barcelona, Spain, vol. 3, pp. 1110–1113 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rowe, D., Rius, I., Gonzàlez, J., Villanueva, J.J. (2005). Improving Tracking by Handling Occlusions. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_44

Download citation

  • DOI: https://doi.org/10.1007/11552499_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics