Measurement of Face Recognizability for Visual Surveillance | SpringerLink
Skip to main content

Measurement of Face Recognizability for Visual Surveillance

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

  • 1924 Accesses

Abstract

In this paper, we propose a method to evaluate the possible recognition degree of a face, called face recognizability, before face recognition. If we can measure the recognizability, we can increase the system efficiency by avoiding recognizing the faces with poor recognizabilities. Based on the features of the orientation distribution on the face regions, we found the facial components. Then we collected lines on the face with major orientations. Last, we used the triangle formed by two eyes and mouth, the degree of the face shape symmetry and intensity symmetry to define the measurement of face recognizability. Experimental results show that recognizability can be used as a measurement to determine whether we need to perform face recognition or not.

Thanks to Ministry of Economic Affairs, R.O.C., for funding 93-EC-17-A-02-S1-032.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yang, H., Levine, M.D.: The background primal sketch: an approach for tracking moving objects. Machine Vision and applications 5, 17–34 (1992)

    Article  Google Scholar 

  2. StauOer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: Proceedings of the IEEE CS Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 246–252 (1999)

    Google Scholar 

  3. Yang, G., Huang, T.S.: Human Face Detection in Complex Background. Pattern Recognition 27(1), 53–63 (1994)

    Article  Google Scholar 

  4. Zhou, J., Guang Lu, X., Zhang, D., Wu, C.Y.: Orientation analysis for rotated human face detection. Image and Vision Computing 20(4), 257–264 (2002)

    Article  Google Scholar 

  5. Sirohey, S.A.: Human Face Segmentation and Identification,Technical Report CS-TR-3176, Univ. of Maryland (1993)

    Google Scholar 

  6. Yow, K.C., Cipolla, R.: Feature-Based Human Face Detection. Image and Vision Computing 15(9), 713–735 (1997)

    Article  Google Scholar 

  7. Augusteijn, M.F., Skujca, T.L.: Identification of Human Faces through Texture-Based Feature Recognition and Neural Network Technology. In: Proc. IEEE Conf. Neural Networks, pp. 392–398 (1993)

    Google Scholar 

  8. Jun, M., Baocai, Y., Kongqiao, W., Lansun, S., Xuecun, C.: A hierarchical multiscale and multiangle system for human face detection in a complex background using gravity-center template. Pattern Recognition 32(7), 1237–1248 (1999)

    Article  Google Scholar 

  9. Hsiun, L.C., Fan, K.C.: Triangle-based approach to the detection of human face. Pattern Recognition 34(6), 1271–1284 (2001)

    Article  Google Scholar 

  10. Bruneli, R., Poggio, T.: Face recognition: features versus templates. IEEE Transactions, Pattern Analysis and Machine Intelligence 15(10), 1042–1052 (1993)

    Article  Google Scholar 

  11. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  12. Gao, Y., Leung, M.K.H.: Face recognition using edge distance in sampling lines (2005)

    Google Scholar 

  13. Huang, L.L., Shimizu, A., Hagihara, Y., Kobatatke, H.: Gradient feature extraction for classification-based face detection. Pattern Recognition, 2501–2511 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, HJ., Tsao, YC. (2005). Measurement of Face Recognizability for Visual Surveillance. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_32

Download citation

  • DOI: https://doi.org/10.1007/11552499_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics