Abstract
This paper presents a view independent video-based face recognition method using posterior probability in Kernel Fisher Discriminant (KFD) space. In practical environment, the view of faces changes dynamically. The robustness to view changes is required for video-based face recognition in practical environment. Since the view changes induces large non-linear variation, kernel-based methods are appropriate. We use KFD analysis to cope with non-linear variation. To classify image sequence, the posterior probability in KFD space is used. KFD analysis assumes that the distribution of each class in high dimensional space is Gaussian. This makes the computation of posterior probability in KFD space easy. The effectiveness of the proposed method is shown by the comparison with the other feature spaces and classification methods.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: A survey. Proceedings of the IEEE 83(5), 705–740 (1995)
Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Surveys 35(4), 399–458 (2003)
Zhou, S., Krueger, V., Chellappa, R.: Probabilistic recognition of human faces from video. Computer Vision and Image Understanding 91, 214–245 (2003)
Lee, K.-C., Ho, J., Yang, M.-H., Kriegman, D.: Video-based face recognition using probabilistic appearance manifolds. In: Proc. IEEE Computer Society Conerence on Computer Vision and Pattern Recognition, pp. 313–320 (2003)
Liu, X., Chen, T.: Video-based face recognition using adaptive hidden markov models. In: Proc. IEEE Computer Society Conerence on Computer Vision and Pattern Recognition, pp. 340–345 (2003)
Hadid, A., Pietikäinen, M.: From still image to vide-based face recognition: An experimental aanlysis. In: Proc. Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 813–818 (2004)
Aggarwal, G., Chowdhury, A.K.R., Chellappa, R.: A system identification approach for video-based face recognition. In: Proc. 17th International Conference on Pattern Recognition, pp. 175–178 (2004)
Murase, H., Nayar, S.K.: Visual learning and recognition of 3d objects from appearance. International Journal of Computer Vision 14(1), 5–24 (1995)
Kurita, T., Takahashi, T.: Viewpoint independent face recognition by competition of viewpoint dependent classifiers. Neurocomputing 51, 181–195 (2003)
Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans. Neural Networks 12(2), 181–201 (2001)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Yang, M.-H.: Face recognition using kernel methods. Advances in Neural Information Processing Systems 14, 215–220 (2002)
Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Müller, K.-R.: Fisher discriminant analysis with kernels. In: Proc. IEEE International Workshop on Neural Networks for Signal Processing, pp. 41–48 (1999)
Kurita, T., Taguchi, T.: A modification of kernel-based fisher discriminant analysis for face detection. In: Proc. fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 300–305 (2002)
Feng, Y., Shi, P.: Face detection based on kernel fisher discriminant analysis. In: Proc. Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 381–384 (2004)
HOIP face database, http://www.hoip.jp/web_catalog/top.html
Graham, D.B., Allinson, N.M.: Characterizing virtual eigensignatures for general purpose face recognition. In: Wechsler, H., Pillips, P.J., Bruce, V., Fogelman-Soulie, F., Huang, T.S. (eds.) Face Recognition: From Theory to Applications. NATO ASI Series F, Computer and Systems Science, vol. 163, pp. 446–456 (1998)
Debnath, R., Takahashi, H.: Kernel selection for the support vector machine. IEICE Trans. Info. & Syst. E87-D12, 2903–2904 (2004)
Rowley, H.A., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Trans. Pattern Analysis and Machine Intelligence 20(1), 23–38 (1998)
Hotta, K.: Support vector machine with local summation kernel for robust face recognition. In: Proc. 17th International Conference on Pattern Recognition, pp. 482–485 (2004)
Hotta, K.: A robust face detector under partial occlusion. In: Proc. IEEE International Conference on Image Processing, pp. 597–600 (2004)
Yang, J., Frangi, A.F., Yang, J.-Y.: A new kernel fisher discriminant algorithm with application to face recogntion. Neurocomputing 56(1), 415–421 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hotta, K. (2005). View Independent Video-Based Face Recognition Using Posterior Probability in Kernel Fisher Discriminant Space. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_12
Download citation
DOI: https://doi.org/10.1007/11552499_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28833-6
Online ISBN: 978-3-540-31999-3
eBook Packages: Computer ScienceComputer Science (R0)