Applying Constrained Linear Regression Models to Predict Interval-Valued Data | SpringerLink
Skip to main content

Applying Constrained Linear Regression Models to Predict Interval-Valued Data

  • Conference paper
KI 2005: Advances in Artificial Intelligence (KI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3698))

Included in the following conference series:

Abstract

Billard and Diday [2] were the first to present a regression method for interval-value data. De Carvalho et al [5] presented a new approach that incorporated the information contained in the ranges of the intervals and that presented a better performance when compared with the Billard and Diday method. However, both methods do not guarantee that the predicted values of the lower bounds (ŷ Li )

will be lower than the predicted values of the upper bounds (ŷ Ui ). This paper presents two approaches based on regression models with inequality constraints that guarantee the mathematical coherence between the predicted values ŷ Li and ŷ Ui . The performance of these approaches, in relation with the methods proposed by Billard and Diday [2] and De Carvalho et al [2], will be evaluated in framework of Monte Carlo experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bock, H.H., Diday, E.: Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data. Springer, Heidelberg (2000)

    Google Scholar 

  2. Billard, L., Diday, E.: Regression Analysis for Interval-Valued Data. In: Kiers, H.A.L., et al. (eds.) Data Analysis, Classification and Related Methods: Proceedings of the Seventh Conference of the International Federation of Classification Societies, IFCS 2000, Namur, Belgium, vol. 1, pp. 369–374. Springer, Heidelberg (2000)

    Google Scholar 

  3. Billard, L., Diday, E.: Symbolic Regression Analysis. In: Jajuga, K., et al. (eds.) Classification, Clustering and Data Analysis: Proceedings of the Eighenth Conference of the International Federation of Classification Societies, IFCS 2002, Crakow, Poland, vol. 1, pp. 281–288. Springer, Heidelberg (2002)

    Google Scholar 

  4. Billard, L., Diday, E.: From the Statistics of Data to the Statistics of Knowledge: Symbolic Data Analysis. Journal of the American Statistical Association 98, 470–487 (2003)

    Article  MathSciNet  Google Scholar 

  5. De Carvalho, F.A.T., Lima Neto, E.A., Tenorio, C.P.: A New Method to Fit a Linear Regression Model for Interval-Valued Data. In: Biundo, S., et al. (eds.) Advances in Artificial Intelligence: Proceedings of the Twenty Seventh Germany Conference on Artificial the International Intelligence, KI 2004, Ulm, Germany, vol. 1, pp. 295–306. Springer, Heidelberg (2004)

    Google Scholar 

  6. Draper, N.R., Smith, H.: Applied Regression Analysis. John Wiley, New York (1981)

    MATH  Google Scholar 

  7. Judge, G.G., Takayama, T.: Inequality Restrictions in Regression Analysis. Journal of the American Statistical Association 61, 166–181 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problem. Prentice-Hall, Englewood Cliffs (1974)

    Google Scholar 

  9. Montgomery, D.C., Peck, E.A.: Introduction to Linear Regression Analysis. John Wiley, New York (1982)

    MATH  Google Scholar 

  10. Scheffé, H.: The Analysis of Variance. John Wiley, New York (1959)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de A. Lima Neto, E., de A.T. de Carvalho, F., Freire, E.S. (2005). Applying Constrained Linear Regression Models to Predict Interval-Valued Data. In: Furbach, U. (eds) KI 2005: Advances in Artificial Intelligence. KI 2005. Lecture Notes in Computer Science(), vol 3698. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11551263_9

Download citation

  • DOI: https://doi.org/10.1007/11551263_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28761-2

  • Online ISBN: 978-3-540-31818-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics