Threshold Based Declustering in High Dimensions | SpringerLink
Skip to main content

Threshold Based Declustering in High Dimensions

  • Conference paper
Database and Expert Systems Applications (DEXA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3588))

Included in the following conference series:

Abstract

Declustering techniques reduce query response times through parallel I/O by distributing data among multiple devices. Except for a few cases it is not possible to find declustering schemes that are optimal for all spatial range queries. As a result of this, most of the research on declustering have focused on finding schemes with low worst case additive error. Recently, constrained declustering that maximizes the threshold k such that all spatial range queries ≤ k buckets are optimal is proposed. In this paper, we extend constrained declustering to high dimensions. We investigate high dimensional bound diagrams that are used to provide upper bound on threshold and propose a method to find good threshold-based declustering schemes in high dimensions. We show that using replicated declustering with threshold N, low worst case additive error can be achieved for many values of N. In addition, we propose a framework to find thresholds in replicated declustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdel-Ghaffar, K.A.S., El Abbadi, A.: Optimal allocation of two-dimensional data. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 409–418. Springer, Heidelberg (1996)

    Google Scholar 

  2. Atallah, M.J., Prabhakar, S.: (Almost) optimal parallel block access for range queries. In: Proc. ACM PODS, Dallas, Texas, May 2000, pp. 205–215 (2000)

    Google Scholar 

  3. Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The R* tree: An efficient and robust access method for points and rectangles. In: Proc. ACM SIGMOD, May 23-25, pp. 322–331 (1990)

    Google Scholar 

  4. Berchtold, S., Bohm, C., Braunmuller, B., Keim, D.A., Kriegel, H.-P.: Fast parallel similarity search in multimedia databases. In: Proc. ACM SIGMOD, Arizona, U.S.A., pp. 1–12 (1997)

    Google Scholar 

  5. Bhatia, R., Sinha, R.K., Chen, C.-M.: Hierarchical declustering schemes for range queries. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.) EDBT 2000. LNCS, vol. 1777, pp. 525–537. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Chen, C.-M., Bhatia, R., Sinha, R.: Declustering using golden ratio sequences. In: ICDE, San Diego, California, February 2000, pp. 271–280 (2000)

    Google Scholar 

  7. Chen, C.-M., Cheng, C.T.: From discrepancy to declustering: Near optimal multidimensional declustering strategies for range queries. In: Proc. ACM PODS, Wisconsin, Madison, pp. 29–38 (2002)

    Google Scholar 

  8. Chen, C.-M., Cheng, C.: Replication and retrieval strategies of multidimensional data on parallel disks. In: CIKM (October 2003)

    Google Scholar 

  9. Du, H.C., Sobolewski, J.S.: Disk allocation for cartesian product files on multiple-disk systems. ACM Trans. on Database Systems 7(1), 82–101 (1982)

    Article  MATH  Google Scholar 

  10. Faloutsos, C., Metaxas, D.: Declustering using error correcting codes. In: Proc. ACM PODS, pp. 253–258 (1989)

    Google Scholar 

  11. Ferhatosmanoglu, H., Agrawal, D., El Abbadi, A.: Concentric hyperspaces and disk allocation for fast parallel range searching. In: Proc. ICDE, Sydney, Australia, March 1999, pp. 608–615 (1999)

    Google Scholar 

  12. Ferhatosmanoglu, H., Tosun, A.Ş., Ramachandran, A.: Replicated declustering of spatial data. In: 23rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (June 2004)

    Google Scholar 

  13. Gaede, V., Gunther, O.: Multidimensional access methods. ACM Computing Surveys 30, 170–231 (1998)

    Article  Google Scholar 

  14. Ghandeharizadeh, S., DeWitt, D.J.: Hybrid-range partitioning strategy: A new declustering strategy for multiprocessor database machines. In: VLDB, August 1990, pp. 481–492 (1990)

    Google Scholar 

  15. Ghandeharizadeh, S., DeWitt, D.J.: A performance analysis of alternative multi-attribute declustering strategies. In: Proc. ACM SIGMOD, pp. 29–38 (1992)

    Google Scholar 

  16. Gray, J., Horst, B., Walker, M.: Parity striping of disc arrays: Low-cost reliable storage with acceptable throughput. In: Proc. VLDB, Washington DC, August 1990, pp. 148–161 (1990)

    Google Scholar 

  17. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc. ACM SIGMOD, pp. 47–57 (1984)

    Google Scholar 

  18. Hua, K.A., Young, H.C.: A general multidimensional data allocation method for multicomputer database systems. In: Tjoa, A.M. (ed.) DEXA 1997. LNCS, vol. 1308, pp. 401–409. Springer, Heidelberg (1997)

    Google Scholar 

  19. Kim, M.H., Pramanik, S.: Optimal file distribution for partial match retrieval. In: Proc. ACM SIGMOD, Chicago, pp. 173–182 (1988)

    Google Scholar 

  20. Prabhakar, S., Abdel-Ghaffar, K., Agrawal, D., El Abbadi, A.: Cyclic allocation of two-dimensional data. In: ICDE, Orlando, Florida, pp. 94–101 (1998)

    Google Scholar 

  21. Samet, H.: The Design and Analysis of Spatial Structures. Addison Wesley, Massachusetts (1989)

    Google Scholar 

  22. Tosun, A.S., Ferhatosmanoglu, H.: Optimal parallel I/O using replication. In: Proceedings of International Workshops on Parallel Processing (ICPP), Vancouver, Canada (August 2002)

    Google Scholar 

  23. Tosun, A.Ş.: Replicated declustering for arbitrary queries. In: 19th ACM Symposium on Applied Computing (March 2004)

    Google Scholar 

  24. Tosun, A.Ş.: Constrained declustering. In: International Conference on Information Technology Coding and Computing (April 2005)

    Google Scholar 

  25. Tosun, A.Ş.: Design theoretic approach to replicated declustering. In: International Conference on Information Technology Coding and Computing (April 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tosun, A.Ş. (2005). Threshold Based Declustering in High Dimensions. In: Andersen, K.V., Debenham, J., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2005. Lecture Notes in Computer Science, vol 3588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11546924_80

Download citation

  • DOI: https://doi.org/10.1007/11546924_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28566-3

  • Online ISBN: 978-3-540-31729-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics