Querying Web Images by Topic and Example Specification Methods | SpringerLink
Skip to main content

Querying Web Images by Topic and Example Specification Methods

  • Conference paper
Advanced Data Mining and Applications (ADMA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3584))

Included in the following conference series:

  • 2372 Accesses

Abstract

Ever since the advent of Internet, there has been an immense growth in the amount of image data that is available on the World Wide Web. With such a magnitude of image availability, an efficient and effective image retrieval system is required to make use of this information. This research presents an image matching and indexing technique that improvises on existing integrated image retrieval methods. The proposed system integrates query by topic and query by example specification methods. The topic-based image retrieval uses the structured format of HTML documents to retrieve relevant pages and potential match images. The query by example specification performs content-based image match for the retrieval of smaller and relatively closer results of the example image. The main goal is to develop a functional image search and indexing system without using a database and to demonstrate that better retrieval results can be achieved with this proposed hybrid search technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cheng, H.D., Sun, Y.: A Hierarchical Approach to Color Image Segmentation Using Homogeneity. IEEE Transactions on Image Processing (December 2001)

    Google Scholar 

  2. Sajjanhar, A., Lu, G.: A grid based shape indexing and retrieval method. Special Issue of Australian Computer Journal on Multimedia Storage and Archiving Systems 29(4), 131–140 (1997)

    Google Scholar 

  3. Belongie, S., et al.: Color- and Texture-Based Image Segmentation Using EM and its Application to Content-Based Image Retrieval. In: Proc. of Int. Conf. Comp. Vis. (1998)

    Google Scholar 

  4. Koskela, M., Laaksonen, J., Oja, E.: Comparison of Techniques for Content-Based Image Retrieva. In: Proceedings of the 12th Scandinavian Conference on Image Analysis (SCIA 2001), Bergen, Norway, pp. 579–586 (2001)

    Google Scholar 

  5. IEEE Multimedia: The Holy Grail of Content-Based Media Analysis. IEEE Multimedia 9(2), 6–10 (2002)

    Google Scholar 

  6. Casanova, A., Fraschini, M., Vitulano, S.: Context: A Technique for Image Retrieval Integrating CONtour and TEXTure Information(2002). In: Proceedings of the XV Brazilian Symposium on Computer Graphics and Image Processing, SIBGRAPI 2002 (2002)

    Google Scholar 

  7. Premchaiswadi, W., Premchaiswadi, N., Patnasirivakin, T., Chimlek, S., Narita, S.: Proc. Image Indexing Technique and Its Parallel Retrieval on PVM VIIth Digital Image Computing: Techniques and Applications (2003)

    Google Scholar 

  8. Prasad, B.G., Gupta, S.K., Biswas, K.K.: Color and shape index for region-based image retrieval. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 716–725. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Li, X., Chen, S.-C., Shyu, M.-L., Furht, B.: An Effective Content- Based Visual Image Retrieval System. In: Proceedings of the 26th IEEE Computer Society International Computer Software and Applications Conference (COMPSAC), Oxford, England, August 26-29, pp. 914–919 (2002)

    Google Scholar 

  10. Ren, J., Shen, Y., Guo, L.: A Novel Image Retrieval Based on Representative Colors. In: Proceedings of IVCNZ 2003 (2003)

    Google Scholar 

  11. Lu, G., Teng, S.: A novel image retrieval technique based on vector quantization. In: Proceedings of International Conference on Computational Intelligence for Modeling, Control and Automation, Viana, Austria, February 17-19, pp. 36–41 (1999)

    Google Scholar 

  12. Lu, G., Williams, B.: An integrated WWW image retrieval system. In: Australian WWW Conference, April 17-20 (1999)

    Google Scholar 

  13. Furht, B., Saksobhavivat, P.: A Fast Content-Based Multimedia Retrieval Technique Using Compressed Data. In: Proc. of SPIE Symposium on Multimedia Storage and Archiving Systems, Boston, MA (November 1998)

    Google Scholar 

  14. Ardizzone, E., Chella, A., Pirrone, R.: Shape Description for Content-based Image Retrieval. In: Laurini, R. (ed.) VISUAL 2000. LNCS, vol. 1929, pp. 212–222. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Pirrone, R., La cascia, M.: Texture Classification for Content-based Image Retrieval. In: Ardizzone, E., di Gesù, V. (eds.) ICIAP 2001 11th International Conference on Image Analysis and Processing, Palermo, Italy, September 22-28, pp. 398–403 (2001)

    Google Scholar 

  16. Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by Image and Video Content: the QBIC System. IEEE Computer 28(9), 23–32 (1995)

    Google Scholar 

  17. Frankel, C., Swain, M., Athitsos, V.: WebSeer: An Image Search Engine for the World Wide Web. University of Chicago Department of Computer Science Technical Report TR-96-14 (August 1996)

    Google Scholar 

  18. Gudivada, V.N., Raghavan, V.V.: Content-Based Image Retrieval Systems. IEEE Computer 28(9), 18–22 (1995)

    Google Scholar 

  19. Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D., Equiz, W.: Efficient and Effective Querying by Image Content. Journal of Intelligent Information System (JIIS) 3(3), 231–262 (1994)

    Article  Google Scholar 

  20. Smith, J.R., Chang, S.F.: VisualSEEk: A Fully Automated Content-Based Image Query System. In: ACM Multimedia 1996, Boston, MA (1996)

    Google Scholar 

  21. Li, J., Wang, J.Z., Wiederhold, G.: Integrated Region Matching for Image Retrieval. In: Proc. of the 2000 ACM Multimedia Conf., Los Angeles (October 2000)

    Google Scholar 

  22. Boujemaa, N., Nastar, C.: Content-Based Image Retrieval at the IMEDIA Group of INRIA in INRIA / Rocquencourt, BP 105, 78153 Le Chesnay, France

    Google Scholar 

  23. Viper home page, http://viper.unige.ch/

  24. Sougata, M., Hirata, K., Hara, Y.: AMORE: A World Wide Web image retrieval engine. World Wide Web 2, 115–132 (1999)

    Article  Google Scholar 

  25. Smith, J.R., Chung, S.F.: Searching for Images and Videos on the World-Wide Web, technical report #459-96-25,Department of Electrical Engineering and Center for Image Technology for New Media, Columbia University, August 19 (1996)

    Google Scholar 

  26. Chang, S.-F., Smith, J., Beigi, M., Benitez, A.: Visual Information Retrieval from Large Distributed Online Repositories. Communications of the ACM 40, 63–71 (1997)

    Article  Google Scholar 

  27. Koster, M.: The Web Robots Pages (1999)

    Google Scholar 

  28. Chakrabarti, S., van den Berg, M., Dom, B.: Focused Crawling: A New Approach to Topic-Specific Web Resource Discovery. In: Proceedings of the 8th International WWW Conference, Toronto, Canada (May 1999)

    Google Scholar 

  29. McCallum, A., Nigam, K., Rennie, J., Seymore, K.: A machine learning approach to building domain-specific search engines. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 662–667 (1999)

    Google Scholar 

  30. Srinivasan, P., Pant, G., Menczer, F.: Target Seeking Crawlers and their Topical Performance. In: The 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (2002)

    Google Scholar 

  31. Diligenti, M., Coetzee, F.M., Lawrence, S., Giles, C.L., Gori, M.: Focused Crawling Using Context Graphs (2000). In: 26th International Conference on Very Large Databases, VLDB 2000 (2000)

    Google Scholar 

  32. Chakrabartiy, S., Punera, K., Subramanyam, M.: Accelerated Focused Crawling through Online Relevance Feedback (2002). In: WWW 2002, Honolulu, May 7-11 (2002)

    Google Scholar 

  33. Chakrabarti, S., Dom, B., Gibson, D., Kleinberg, J., Raghavan, P., Rajagopalan, S.: Automatic resource compilation by analyzing hyperlink structure and associated text. Computer Networks and ISDN Systems 30, 65–74 (1998)

    Article  Google Scholar 

  34. Tjahyadi, R., Liu, W., Venkatesh, S.: Department of Computer Science, Curtin University of Technology, GPO Box U1987, Perth WA 6845, Australia Application of the DCT Energy Histogram for Face Recognition

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, CC., Prabhakara, R. (2005). Querying Web Images by Topic and Example Specification Methods. In: Li, X., Wang, S., Dong, Z.Y. (eds) Advanced Data Mining and Applications. ADMA 2005. Lecture Notes in Computer Science(), vol 3584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527503_62

Download citation

  • DOI: https://doi.org/10.1007/11527503_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27894-8

  • Online ISBN: 978-3-540-31877-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics