Inference on Distributed Data Clustering | SpringerLink
Skip to main content

Inference on Distributed Data Clustering

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3587))

Abstract

In this paper we address confidentiality issues in distributed data clustering, particularly the inference problem. We present a measure of inference risk as a function of reconstruction precision and number of colluders in a distributed data mining group. We also present KDEC-S, which is a distributed clustering algorithm designed to provide mining results while preserving confidentiality of original data. The underlying idea of our algorithm is to use an approximation of density estimation such that it is not possible to reconstruct the original data with better probability than some given level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy preserving data mining algorithms. In: Proceedings of 20th ACM Symposium on Principles of Database Systems, Santa Barbara, Califonia, May 2001, pp. 247–255 (2001)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proc. of the ACM SIGMOD Conference on Management of Data, May 2000, pp. 439–450. ACM Press, New York (2000)

    Chapter  Google Scholar 

  3. Atallah, M., Bertino, E., Elmagarmid, A., Ibrahim, M., Verykios, V.: Disclosure limitation of sensitive rules. In: Proceedings of 1999 IEEE Knowledge and Data Engineering Exchange Workshop (KDEX 1999), Chicago,IL, November 1999, pp. 45–52 (1999)

    Google Scholar 

  4. da Silva, J.C., Klusch, M., Lodi, S., Moro, G.: Inference attacks in peer-to-peer homogeneous distributed data mining. In: 16th European Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain (August 2004)

    Google Scholar 

  5. Dasseni, E., Verykios, V.S., Elmagarmid, A.K., Bertino, E.: Hiding association rules by using confidence and support. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 369–383. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy preserving data mining. In: Proceedings of PODS 2003, San Diego, California, June 9-12, San Diego, California (2003)

    Google Scholar 

  7. Farkas, C., Jajodia, S.: The inference problem: A survey. ACM SIGKDD Explorations Newsletter 4(2), 6–11 (2002)

    Article  Google Scholar 

  8. Hinneburg, A., Keim, D.A.: An efficient approach to clustering in large multimedia databases with noise. In: Knowledge Discovery and Data Mining, pp. 58–65 (1998)

    Google Scholar 

  9. Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association rules on horizontally partitioned data. In: The ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD 2002) (June 2002)

    Google Scholar 

  10. Klusch, M., Lodi, S., Moro, G.: Agent-based distributed data mining: the KDEC scheme. In: Klusch, M., Bergamaschi, S., Edwards, P., Petta, P. (eds.) Intelligent Information Agents. LNCS (LNAI), vol. 2586, pp. 104–122. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Pinkas, B.: Cryptographic techniques for privacy-preserving data mining. ACM SIGKDD Explorations Newsletter 4(2), 12–19 (2002)

    Article  Google Scholar 

  13. Rizvi, S.J., Haritsa, J.R.: Maintaining data privacy in association rule mining. In: Proceedings of the 28th VLDB – Very Large Data Base Conference, Hong Kong, China, pp. 682–693 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

da Silva, J.C., Klusch, M. (2005). Inference on Distributed Data Clustering. In: Perner, P., Imiya, A. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2005. Lecture Notes in Computer Science(), vol 3587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11510888_60

Download citation

  • DOI: https://doi.org/10.1007/11510888_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26923-6

  • Online ISBN: 978-3-540-31891-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics