Abstract
It has previously been suggested that the visual cortex performs a data analysis similar to independent component analysis (ICA). Following this idea we show that an incomplete ICA, applied after filtering, can be used to detect objects in natural scenes. Based on this we show that an incomplete ICA can be used to efficiently cluster independent components. We further apply this algorithm to toy data and a real-world fMRI data example and show that this approach to clustering offers a wide variety of applications.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Calhoun, V.D., Adali, T., Hansen, L.K., Larsen, J., Pekar, J.J.: ICA of Functional MRI Data: An Overview. In: Fourth International Symposium on Independent Component Analysis and Blind Source Separation, pp. 281–288 (2003)
Keck, I.R., Theis, F.J., Gruber, P., Lang, E.W., Specht, K., Puntonet, C.G.: 3D Spatial Analysis of fMRI Data on a Word Perception Task. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 977–984. Springer, Heidelberg (2004)
Bell, A.J., Sejnowski, T.J.: The ‘Independent Components’ of Natural Scenes are Edge Filters. Vision Research 37(23), 3327–3338 (1997)
Bell, A.J., Sejnowski, T.J.: An information-maximisation approach to blind separation and blind deconvolution. Neural Computation 7(6), 1129–1159 (1995)
Hyvärinnen, A.: Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)
Amari, S.: Natural Gradient Learning for Over- and Under-Complete Bases in ICA. Neural Computation 11, 1875–1883 (1999)
Theis, F.J., Jung, A., Puntonet, C.G., Lang, E.W.: Linear geometric ICA: Fundamentals and algorithms. Neural Computation 15, 419–439 (2003)
Hyvärinnen, A., Oja, E.: Independent Component Analysis: Algorithms and Applications. Neural Networks 13(4-5), 411–430 (2000)
Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., Moulines, E.: A Blind Source Separation Technique Using Second-Order Statistics. IEEE Transactions on Signal Processing 45(2), 434–444 (1997)
Bach, F.R., Jordan, M.I.: Beyond independent components: Trees and Clusters. Journal of Machine Learning Research 4, 1205–1233 (2003)
Hyvärinnen, A., Hoyer, P.: Topographic independent component analysis. Neural Computation 13, 1527–1558 (2001)
Meyer-Bäse, A., Theis, F.J., Lange, O., Puntonet, C.G.: Tree-Dependent and Topographic Independent Component Analysis for fMRI Analysis. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 782–789. Springer, Heidelberg (2004)
McKeown, M.J., Sejnowski, T.J.: Analysis of fmri data by blind separation into independent spatial components. Human Brain Mapping 6, 160–188 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Keck, I.R., Nassabay, S., Puntonet, C.G., Lang, E.W. (2005). A New Approach to Clustering and Object Detection with Independent Component Analysis. In: Mira, J., Álvarez, J.R. (eds) Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach. IWINAC 2005. Lecture Notes in Computer Science, vol 3562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499305_57
Download citation
DOI: https://doi.org/10.1007/11499305_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26319-7
Online ISBN: 978-3-540-31673-2
eBook Packages: Computer ScienceComputer Science (R0)