A New Approach to Clustering and Object Detection with Independent Component Analysis | SpringerLink
Skip to main content

A New Approach to Clustering and Object Detection with Independent Component Analysis

  • Conference paper
Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach (IWINAC 2005)

Abstract

It has previously been suggested that the visual cortex performs a data analysis similar to independent component analysis (ICA). Following this idea we show that an incomplete ICA, applied after filtering, can be used to detect objects in natural scenes. Based on this we show that an incomplete ICA can be used to efficiently cluster independent components. We further apply this algorithm to toy data and a real-world fMRI data example and show that this approach to clustering offers a wide variety of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Calhoun, V.D., Adali, T., Hansen, L.K., Larsen, J., Pekar, J.J.: ICA of Functional MRI Data: An Overview. In: Fourth International Symposium on Independent Component Analysis and Blind Source Separation, pp. 281–288 (2003)

    Google Scholar 

  2. Keck, I.R., Theis, F.J., Gruber, P., Lang, E.W., Specht, K., Puntonet, C.G.: 3D Spatial Analysis of fMRI Data on a Word Perception Task. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 977–984. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Bell, A.J., Sejnowski, T.J.: The ‘Independent Components’ of Natural Scenes are Edge Filters. Vision Research 37(23), 3327–3338 (1997)

    Article  Google Scholar 

  4. Bell, A.J., Sejnowski, T.J.: An information-maximisation approach to blind separation and blind deconvolution. Neural Computation 7(6), 1129–1159 (1995)

    Article  Google Scholar 

  5. Hyvärinnen, A.: Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

  6. Amari, S.: Natural Gradient Learning for Over- and Under-Complete Bases in ICA. Neural Computation 11, 1875–1883 (1999)

    Article  Google Scholar 

  7. Theis, F.J., Jung, A., Puntonet, C.G., Lang, E.W.: Linear geometric ICA: Fundamentals and algorithms. Neural Computation 15, 419–439 (2003)

    Article  MATH  Google Scholar 

  8. Hyvärinnen, A., Oja, E.: Independent Component Analysis: Algorithms and Applications. Neural Networks 13(4-5), 411–430 (2000)

    Article  Google Scholar 

  9. Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., Moulines, E.: A Blind Source Separation Technique Using Second-Order Statistics. IEEE Transactions on Signal Processing 45(2), 434–444 (1997)

    Article  Google Scholar 

  10. Bach, F.R., Jordan, M.I.: Beyond independent components: Trees and Clusters. Journal of Machine Learning Research 4, 1205–1233 (2003)

    Article  MathSciNet  Google Scholar 

  11. Hyvärinnen, A., Hoyer, P.: Topographic independent component analysis. Neural Computation 13, 1527–1558 (2001)

    Article  Google Scholar 

  12. Meyer-Bäse, A., Theis, F.J., Lange, O., Puntonet, C.G.: Tree-Dependent and Topographic Independent Component Analysis for fMRI Analysis. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 782–789. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. McKeown, M.J., Sejnowski, T.J.: Analysis of fmri data by blind separation into independent spatial components. Human Brain Mapping 6, 160–188 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keck, I.R., Nassabay, S., Puntonet, C.G., Lang, E.W. (2005). A New Approach to Clustering and Object Detection with Independent Component Analysis. In: Mira, J., Álvarez, J.R. (eds) Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach. IWINAC 2005. Lecture Notes in Computer Science, vol 3562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499305_57

Download citation

  • DOI: https://doi.org/10.1007/11499305_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26319-7

  • Online ISBN: 978-3-540-31673-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics