Abstract
Under the umbrella of buzzwords such as “Business Activity Monitoring” (BAM) and “Business Process Intelligence” (BPI) both academic (e.g., EMiT, Little Thumb, InWoLvE, Process Miner, and MinSoN) and commercial tools (e.g., ARIS PPM, HP BPI, and ILOG JViews) have been developed. The goal of these tools is to extract knowledge from event logs (e.g., transaction logs in an ERP system or audit trails in a WFM system), i.e., to do process mining. Unfortunately, tools use different formats for reading/storing log files and present their results in different ways. This makes it difficult to use different tools on the same data set and to compare the mining results. Furthermore, some of these tools implement concepts that can be very useful in the other tools but it is often difficult to combine tools. As a result, researchers working on new process mining techniques are forced to build a mining infrastructure from scratch or test their techniques in an isolated way, disconnected from any practical applications. To overcome these kind of problems, we have developed the ProM framework, i.e., an “pluggable” environment for process mining. The framework is flexible with respect to the input and output format, and is also open enough to allow for the easy reuse of code during the implementation of new process mining ideas. This paper introduces the ProM framework and gives an overview of the plug-ins that have been developed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
van der Aalst, W.M.P., van Dongen, B.F.: Discovering Workflow Performance Models from Timed Logs. In: Han, Y., Tai, S., Wikarski, D. (eds.) EDCIS 2002. LNCS, vol. 2480, pp. 45–63. Springer, Heidelberg (2002)
van der Aalst, W.M.P., Song, M.: Mining Social Networks: Uncovering interaction patterns in business processes. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 244–260. Springer, Heidelberg (2004)
van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 47(2), 237–267 (2003)
van der Aalst, W.M.P., Weijters, A.J.M.M. (eds.): Process Mining, Special Issue of Computers in Industry, vol. 53(3). Elsevier Science Publishers, Amsterdam (2004)
van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)
Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Sixth International Conference on Extending Database Technology, pp. 469–483 (1998)
Billington, J., et al.: The Petri Net Markup Language: Concepts, Technology, and Tools. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 483–505. Springer, Heidelberg (2003)
Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249 (1998)
Grigori, D., Casati, F., Dayal, U., Shan, M.C.: Improving Business Process Quality through Exception Understanding, Prediction, and Prevention. In: Apers, P., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao, K., Snodgrass, R. (eds.) Proceedings of 27th International Conference on Very Large Data Bases (VLDB 2001), pp. 159–168. Morgan Kaufmann, San Francisco (2001)
Herbst, J.: A Machine Learning Approach to Workflow Management. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 183–194. Springer, Heidelberg (2000)
IDS Scheer. ARIS Process Performance Manager (ARIS PPM): Measure, Analyze and Optimize Your Business Process Performance (whitepaper). IDS Scheer, Saarbruecken, Gemany (2002), http://www.ids-scheer.com
Keller, G., Teufel, T.: SAP R/3 Process Oriented Implementation. Addison-Wesley, Reading (1998)
de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Using Genetic Algorithms to Mine Process Models: Representation, Operators and Results. BETA Working Paper Series, WP 124, Eindhoven University of Technology, Eindhoven (2004)
zur Mühlen, M., Rosemann, M.: Workflow-based Process Monitoring and Controlling - Technical and Organizational Issues. In: Sprague, R. (ed.) Proceedings of the 33rd Hawaii International Conference on System Science (HICSS-33), pp. 1–10. IEEE Computer Society Press, Los Alamitos (2000)
Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg (1998)
Staffware. Staffware Process Monitor, SPM (2002), http://www.staffware.com
Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Workflow Models from Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering 10(2), 151–162 (2003)
Wen, L., Wang, J., van der Aalst, W.M.P., Wang, Z., Sun, J.: A Novel Approach for Process Mining Based on Event Types. In: BETA Working Paper Series, WP 118. Eindhoven University of Technology, Eindhoven (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P. (2005). The ProM Framework: A New Era in Process Mining Tool Support. In: Ciardo, G., Darondeau, P. (eds) Applications and Theory of Petri Nets 2005. ICATPN 2005. Lecture Notes in Computer Science, vol 3536. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494744_25
Download citation
DOI: https://doi.org/10.1007/11494744_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26301-2
Online ISBN: 978-3-540-31559-9
eBook Packages: Computer ScienceComputer Science (R0)