A Deterministic-Statistic Adventitia Detection in IVUS Images | SpringerLink
Skip to main content

A Deterministic-Statistic Adventitia Detection in IVUS Images

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3504))

Included in the following conference series:

Abstract

Plaque analysis in IVUS planes needs accurate intima and adventitia models. Large variety in adventitia descriptors difficulties its detection and motivates using a classification strategy for selecting points on the structure. Whatever the set of descriptors used, the selection stage suffers from fake responses due to noise and uncompleted true curves. In order to smooth background noise while strengthening responses, we apply a restricted anisotropic filter that homogenizes grey levels along the image significant structures. Candidate points are extracted by means of a simple semi supervised adaptive classification of the filtered image response to edge and calcium detectors. The final model is obtained by interpolating the former line segments with an anisotropic contour closing technique based on functional extension principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. McInerney, T., Terzopoulos, D.: Deformable models in medical images analyis: a survey. Medical Image Analysis 1, 91–108 (1996)

    Article  Google Scholar 

  2. Zhang, X., Sonka, M.: Tissue characterization in intravascular ultrasound images. IEEE Trans. on Medical Imaging 17, 889–899 (1998)

    Article  Google Scholar 

  3. Pujol, O., Radeva, P.: Supervised Texture classification for Intravascular Tisue Characterization. In: Handbook of Medical Imaging. Kluwer Academic/Plenum Pub., Dordrecht (2004)

    Google Scholar 

  4. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. Int. Journal of Computer Vision 1, 321–331 (1987)

    Article  Google Scholar 

  5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic Active Contours. Int. J. Comp. Vision 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  6. Klingensmith, J.D., Shekhar, R., Vince, D.G.: Evaluation of three-dimensional segmentation algorithms for the identification of luminal and Medial-adventitial borders in intravascular ultrasound. IEEE Trans. on Med. Imag. 19(10), 996–1011 (2000)

    Article  Google Scholar 

  7. von Birgelen, C., de Vrey, E.A., Mintz, G.S., Nicosia, A., Bruining, N., Li, W., Slager, C.J., Roelandt, J.R.T.C., Serruys, P.W., de Feyter, P.J.: ECG-gated three-dimensional intravascular ultrasound: Feasibility and reproducibility of the automated analysis of coronary lumen and atherosclerotic plaque dimensions in humans. Circulation 96, 2944–2952 (1997)

    Google Scholar 

  8. Gil, D., Radeva, P.: Extending Anisotropic Operators to Recover Smooth Shapes. Comp. Vis. Imag. Unders. (in press)

    Google Scholar 

  9. Gil, D.: Geometric Differential Operators for Shape Modelling. PhD Tesis, Universitat Autonoma de Barcelona (2004), available at http://www.cvc.uab.es/~debora/

  10. Hernandez, A., Gil, D., Radeva, P., Nofrerias, E.: Anisotropic Processing of Image Structures for Adventitia Detection in IVUS Images. In: Proc. CiC (2004)

    Google Scholar 

  11. Weickert, J.: A Review of Nonlinear Diffusion Filtering. In: ter Haar Romeny, B.M., Florack, L.M.J., Viergever, M.A. (eds.) Scale-Space 1997. LNCS, vol. 1252, pp. 3–28. Springer, Heidelberg (1997)

    Google Scholar 

  12. Jähne, B.: Spatio-Temporal Image Processing. LNCS, vol. 751. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  13. Duda, R., Hart, P.: Pattern Classification. Wiley-Interscience, Hoboken (2001)

    MATH  Google Scholar 

  14. Paragios, N., Deriche, R.: Geodesic Active Contours for Supervised Texture Segmentation. In: Proc. of Comp. Vis. and Pat. Rec., vol. 2, pp. 422–427 (1999)

    Google Scholar 

  15. Evans, L.C.: Partial Differential Equations, Berkeley Math. Lect. Notes (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gil, D., Hernandez, A., Carol, A., Rodriguez, O., Radeva, P. (2005). A Deterministic-Statistic Adventitia Detection in IVUS Images. In: Frangi, A.F., Radeva, P.I., Santos, A., Hernandez, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2005. Lecture Notes in Computer Science, vol 3504. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494621_7

Download citation

  • DOI: https://doi.org/10.1007/11494621_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26161-2

  • Online ISBN: 978-3-540-32081-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics