Automatic Cardiac 4D Segmentation Using Level Sets | SpringerLink
Skip to main content

Automatic Cardiac 4D Segmentation Using Level Sets

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3504))

Included in the following conference series:

  • 1059 Accesses

Abstract

For the analysis of shape variations of the heart and the cardiac motion in a clinical environment it is necessary to segment a large amount of data in order to be able to build statistically significant models. Therefore it has been the aim of this project to find and develop methods that allow the creation of a fully automatic segmentation pipeline for the segmentation of endocardium and myocardium in ECG-triggered MRI images. For this purpose a combination of a number of image processing techniques, from the fields of segmentation, modeling and image registration have been used and extended to create a segmentation pipeline that reduces the need for supplementary manual correction of the segmented labels to a minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. International Journal on Computer Vision 1, 321–331 (1987)

    Article  Google Scholar 

  2. Sethian, J.A.: Curvature and evolution of fronts. Commun. Math. Phys. 101 (1985)

    Google Scholar 

  3. Osher, J., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Material Science, 2nd edn. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  5. Leventon, M.: Statistical Models for Medical Image Analysis. In: Artificial Intelligence Lab. MIT, Cambridge (2000)

    Google Scholar 

  6. Viola, P., Wells, W.M.: Alignment of maximization of mutual information. International Journal on Computer Vision 22, 61–97 (1997)

    Article  Google Scholar 

  7. McInerney, T., Terzopoulos, D.: T-snakes: Topology adaptive snakes. Medical Image Analysis 4, 73–91 (2000)

    Article  Google Scholar 

  8. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE TPAMI 17, 158–175 (1995)

    Google Scholar 

  9. Caselles, V., Kimmel, R., Sapiro, G.: A geometric model for active contours. Numerische Mathematik 66 (1993)

    Google Scholar 

  10. Goldenberg, R., Kimmel, R., Rivlin, R., Rudzsky, E.: Fast Geodesic Active Contours. IEEE Transactions Imag. Proc. 10, 1476–1475 (2001)

    Google Scholar 

  11. Zhu, S.C., Yuille, A.: Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation. IEEE Transactions on Pattern Analysis and machine Intelligence 18 (1996)

    Google Scholar 

  12. http://www.itk.org

  13. Leventon, M., Grimson, E., Faugeras, O.: Statistical Shape Influence in Geodesic Active Contours. Computer Vision and Pattern Recognition 1, 316–323 (2000)

    Google Scholar 

  14. http://www.vtk.org

  15. Fritscher, K.D., Schubert, R.: A software framework for pre-processing and level set segmentation of medical image data. Presented at SPIE Medical Imaging, San Diego (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fritscher, K.D., Pilgram, R., Schubert, R. (2005). Automatic Cardiac 4D Segmentation Using Level Sets. In: Frangi, A.F., Radeva, P.I., Santos, A., Hernandez, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2005. Lecture Notes in Computer Science, vol 3504. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494621_12

Download citation

  • DOI: https://doi.org/10.1007/11494621_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26161-2

  • Online ISBN: 978-3-540-32081-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics