Artificial Immune Systems—An Emergent Technology for Autonomous Intelligent Systems and Data Mining | SpringerLink
Skip to main content

Artificial Immune Systems—An Emergent Technology for Autonomous Intelligent Systems and Data Mining

  • Conference paper
  • First Online:
Autonomous Intelligent Systems: Agents and Data Mining (AIS-ADM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3505))

Abstract

Artificial Immune Systems (AIS) are still considered with an attitude of reserve by most practitioners in Computational Intelligence (CI), much more some of them even considering this emergent computing paradigm in an infancy stage. This work aims to prove why AIS are of interest, starting from the real-world of applications that is asking for a radical change of the information systems framework. Namely, the component-based framework must be replaced with an agent-based one, where the system complexity requires that any agent to be clearly featured by its autonomy. The AIS methods build adaptive large-scale multi-agent systems that are open to the environment, systems that are not at all fixed just after the design phase, but are real-time adaptive to unpredictable situations and malicious defects. The AIS perform the defense of a complex system against malicious defects achieving its survival strategy by extension of the concept of organization of multicellular organisms to the information systems. The main behavioral features of AIS — as self-maintenance, distributed and adaptive computational systems — are defined and described in relation to the Immune System as an information system. A comparison of AIS methodology with other Intelligent Technologies is another point of the lecture. The overview of some actual AIS applications is made using a practical engineering design strategy that views AIS as the effective software with agent-based architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ishida, Y.: Immunity-Based Systems: A Design Perspective. Springer, Heidelberg (2004) ISBN: 3-540-00896-9

    Book  Google Scholar 

  2. de Castro, L.N., Timmis, J.I.: Artificial Immune Systems: A New Computational Approach. Springer, Heidelberg (2002) ISBN: 1-85233-594-7

    MATH  Google Scholar 

  3. Negoita, M.G., Neagu, C.D., Palade, V.: Computational Intelligence – Engineering of Hybrid Systems. Springer, Heidelberg (2005) ISBN: 3-540-23219-2

    MATH  Google Scholar 

  4. Jerne, N.K.: The Immune System. Scientific American 229(1), 52–60 (1973)

    Article  Google Scholar 

  5. Jerne, N.K.: The Generastive Grammar of the Immune System. The EMBO Journal 4(4), 847–852 (1985)

    Article  Google Scholar 

  6. Percus, J.K., Percus, O., Person, A.S.: Predicting the Size of the Antibody Combining Region from Consideration of Efficient Self/Nonself Discrimination. Proceedings of The National Academy of Science 60, 1691–1695 (1993)

    Article  Google Scholar 

  7. Ishida, Y.: The Immune System as a Self-Identification Process: a Survey and a Proposal. In: Workshop Notes-Workshop 4: Immunity-Based Systems, International Conference on Multiagent Systems/International Symposium on Models for Software Architecture, December 1996, Keihanna Plaza, Tokyo, Japan, pp. 2–13 (1996)

    Google Scholar 

  8. Dasgupta, D., Attoh-Okine, N.: Immunity-Based Systems: A Survey. In: Workshop Notes-Workshop 4: Immunity-Based Systems, International Conference on Multiagent Systems/International Symposium on Models for Software Architecture, Keihanna Plaza, Tokyo, Japan, December 1996, pp. 13–25 (1996)

    Google Scholar 

  9. Negoita, M.G.: Basics of Engineering the Hybrid Intelligent Systems — Not only Industrial Applications. In: Negoita, M.G., Reusch, B. (eds.) Real World Applications of Computational Intelligence, pp. 5–55. Springer, Heidelberg (2005) ISBN: 3- 540-25006-9

    MATH  Google Scholar 

  10. de Castro, L.N., Von Zuben, F.J.: Immune and Neural Networks Models: Theoretical and Empirical Comparisons. International Journal of Computational Intelligence and Applications (IJCIA) 1(3), 239–259 (2001)

    Article  Google Scholar 

  11. Dasgupta, D.: Artificial Neural Networks and Artificial Immune Systems: Simi arities and Differences. In: Proceedings of The IEEE Systems, Man and Cybernetics Conference, vol. 1, pp. 873–878 (1997)

    Google Scholar 

  12. Forrest, S., Perelson, A.: Genetic Algorithms and the Immune Systems. In: Goos, C., Hartmanis, J. (eds.) Proceedings of The Parallel Problem Solving from Nature, pp. 320–325. Springer, Heidelberg (1990)

    Google Scholar 

  13. Hoffman, G.W.: A Neural Network Model Based on the Analogy with the Immune System. Journal of Theoretical Biology 122, 33–67 (1986)

    Article  MathSciNet  Google Scholar 

  14. Forrest, S., Javornik, B., Smith, R.E., Perelson, A.: Using Genetic Algorithms to Explore Pattern Recognition in the Immune System. Evolutionary Computation 1(3), 191–211 (1993)

    Article  Google Scholar 

  15. Yoo, J., Hajela, P.: Immune Network Simulations in Multicriterion Design. Structural Optimization 18(2/3), 85–94 (1999)

    Article  Google Scholar 

  16. Nikolaev, N.I., Iba, H., Slavov, V.: Inductive Genetic Programming with Immune Network Dynamics. Advances in Genetic Programming 3, 355–376 (1999)

    Google Scholar 

  17. Jun, J.-H., Lee, D.-W., Sim, K.-B.: Realization of Cooperative Behavior in Distributed Autonomous Robotic Systems Using Artificial Immune System. Proceedings of the IEEE of The IEEE System, Man, and Cybernetics 4, 614–619 (1999)

    Google Scholar 

  18. Deaton, R., Garzon, M., Rose, J.A., Murphy, R.C., Stevens Jr., S.E., Franceschetti, D.R.: A DNA Based Artificial Immune System for Self-Nonself Discrimination. Proceedings of The IEEE System, Man, and Cybernetics I, 862–866 (1997)

    Google Scholar 

  19. Bradley, D.W., Ortega-Sanchez, C., Tyrrell, A.: Embryonics + Immunotronics: A Bio-Inspired Approach to Fault Tolerance. In: Proceedings of the 2nd NASA/DoD Workshop on Evolvable Hardware, pp. 215–223. IEEE Computer Society, Los Alamitos (2000)

    Chapter  Google Scholar 

  20. Bradley, D.W., Tyrrell, A.: The Architecture for a Hardware Immune System. In: Proceedings of the 3nd NASA/DoD Workshop on Evolvable Hardware, pp. 193–200. IEEE Computer Society, Los Alamitos (2001)

    Google Scholar 

  21. Ortega, C., Mange, D., Smith, S., Tyrrell, A.: Embryonics: A Bio-Inspired Cellular Architecture with Fault-Tolerant Properties. J. Genetic Programming and Evolvable Machines 1, 187–215 (2000)

    Article  Google Scholar 

  22. Shimooka, T., Shimizu, K.: Idiotypic Network Model for Feature Extraction in Pattern Recognition. In: Palade, V., Howlett, J.R., Jain, L. (eds.) Knowledge-Based Intelligent Information and Engineering Systems, pp. 511–518, Part II. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Dasgupta, D., Yu, S., Majmudar, N.S.: MILA – Multilevel Immune Learning Algorithm. In: Cantu-Paz, E., Foster, J., Kalaynmoy, D., Lawrence, D.D., Rajkumar, R., O’Reilly, U.-M., Beyer, H.-G., Standish, R., Kendall, G., Wilson, S., Harman, M., Wegner, J., Dasgupta, D., Potter, M., Schultz, A., Dowsland, K., Jonoska, N., Miller, J. (eds.) Genetic and Evolutionary Computation – GECCO 2003, pp. 183–194, Part I. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Okamoto, T., Watanabe, T., Ishida, Y.: Towards an Immunity-Based System for Detect ing Masqueraders. In: Palade, V., Howlett, J.R., Jain, L. (eds.) Knowledge-Based Intelligent Information and Engineering Systems, pp. 488–495, Part II. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Watanabe, Y., Ishida, Y.: Immunity-Based Approaches for Self-Monitoring in Distrib uted Intrusion Detection System. In: Palade, V., Howlett, J.R., Jain, L. (eds.) Knowledge-Based Intelligent Information and Engineering Systems, pp. 503–510, Part II. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Oda, T., White, T.: Developing an Immunity to Spam. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 207–242, Part I. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  27. Kelsey, J., Timmis, J.I.: Immune Inspired Somatic Contiguous Hypermutation for Function Optimization. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 207–218, Part I. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  28. Cutello, V., Nicosia, G., Pavone, M.: A Hybrid Immune Algorithm with Information Gain for the Graph Coloring Problem. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 171–183, Part I. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  29. Cutello, V., Nicosia, G.: Noisy Channel and Reaction-Diffusion Systems: Models for Artificial Immune Systems. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2774, pp. 496–502, Part II. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  30. Ishiguro, A., Watanabe, Y., Kondo, T., Shirai, Y., Uchikawa, Y.: Immunoid: A Robot with a Decentralized Behavior Arbitration Mechanisms Based on the Immune System. In: Work shop Notes-Workshop 4: Immunity-Based Systems, International Conference on Multi agent Systems/International Symposium on Models for Software Architecture, Keihanna Plaza, Tokyo, Japan, December 1996, pp. 82–92 (1996)

    Google Scholar 

  31. Dilger, W.: The Immune System of the Smart Home. In: Workshop Notes-Workshop 4: Immunity-Based Systems, International Conference on Multiagent Systems/International Symposium on Models for Software Architecture, Keihanna Plaza, Tokyo, Japan, December 1996, pp. 72–81 (1996)

    Google Scholar 

  32. Attoh-Okine, N.: General Framework for Applying Artificial Immune Systems to a Highway Infrastructure Deterioration Modeling. In: Workshop Notes-Workshop 4: Immunity-Based Systems, International Conference on Multiagent Systems/International Symposium on Models for Software Architecture, Keihanna Plaza, Tokyo, Japan, December 1996, pp. 25–37 (1996)

    Google Scholar 

  33. Ishida, Y.: Agent-Based Architecture of Selection Principle in the Immune System. In: Workshop Notes-Workshop 4: Immunity- Based Systems, International Conference on Multiagent Systems/International Symposium on Models for Software Architecture, Keihanna Plaza, Tokyo, Japan, December 1996, pp. 93–105 (1996)

    Google Scholar 

  34. Negoita, M.G., Pritchard, D.: Testing Intelligent Tutoring Systems by Virtual Students. In: Arif Wani, M. (ed.) Proc. Int. Conf. on Machine-Learning and Applications (ICMLA 2003), Los Angeles, USA, pp. 98–104 (2003)

    Google Scholar 

  35. Negoita, M.G., Pritchard, D.: Some Test Problems Regarding Intelligent Tutoring Systems. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2774, pp. 986–992, Part II. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  36. Negoita, M.G., Pritchard, D.: Using Virtual Student Model for Testing Intelligent Tutoring Systems. J. Interactive Technology & Smart Education 1, 3–10 (2004)

    Article  Google Scholar 

  37. Negoita, M.G., Pritchard, D.: ”Virtual Student” Leads to the Possibility of Optimizer Agents in an ITS. In: Kantardzic, M. (ed.) Proc. ICMLA 2004, Louisville, KY, USA (2004)

    Google Scholar 

  38. Mc Taggart, J.: Intelligent Tutoring Systems and Education for the Future. In: 512X Literature Review, April 30 (2001), http://www.drake.edu/mathcs/mctaggart/C1512X/LitReview_OnlinePDF.pdf

  39. Pritchard, D., Negoita, G.M.: A Fuzzy – GA Hybrid Technique for Optimisation of Teaching Sequences Presented in ITSs. In: Reusch, B. (ed.) Proc 8-th Fuzzy Days. LNCS. Springer, Heidelberg (2004)

    Google Scholar 

  40. Ando, S., Iba, H.: Artificial Immune System for Classification of Gene Expression Data. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1926–1937, Part II. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  41. Oeda, S., Ichimura, T., Yamashita, T., Yoshida, K.: A Proposal of Immune Multi-agent Neural Networks and Its Application to Medical Diagnostic System for Hepatobiliary Disorders. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2774, pp. 527–532, Part II. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  42. Vizcaino, A., Favela, J., Piattini, M.: A Multi-agent System for Knowledge Management in Software Maintemance. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2773, pp. 413–421, Part I. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  43. Tianfield, H.: A Study on the Multi-agent Approach to Large Complex Systems. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2773, pp. 438–444, Part I. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  44. Watanabe, Y., Sato, S., Ishida, Y.: An Approach for Self-repair in Distributed System Using Immunity-Based Diagnostic Mobile Agents. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3214, pp. 504–510, Part II. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  45. Shimooka, T., Shimizu, K.: Artificial Immune System for Personal Identification with Finger Vein Pattern. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3214, pp. 511–518, Part II. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  46. Okamoto, T., Watanabe, T., Ishida, Y.: Mechanism for Generating Immunity-Based Agents that Detect Masqeraders. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3214, pp. 534–540, Part II. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Negoita, M. (2005). Artificial Immune Systems—An Emergent Technology for Autonomous Intelligent Systems and Data Mining. In: Gorodetsky, V., Liu, J., Skormin, V.A. (eds) Autonomous Intelligent Systems: Agents and Data Mining. AIS-ADM 2005. Lecture Notes in Computer Science(), vol 3505. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11492870_3

Download citation

  • DOI: https://doi.org/10.1007/11492870_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26164-3

  • Online ISBN: 978-3-540-31932-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics